精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)的定义域为[-1,5],部分对应值如表.f(x)的导函数y=f′(x)的图象如图所示.
x-1045
f(x)1221
下列关于函数f(x)的命题说法正确的是(  )
A.函数y=f(x)是周期函数
B.当1<a<2时,函数y=f(x)-a有4个零点
C.如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4
D.函数f(x)在[0,2]上是减函数

分析 根据函数的单调性和特殊值,可判断A的真假,
由f(x)=a,因为极小值f(2)未知,所以无法判断函数y=f(x)-a有几个零点,进而判断B的真假,
根据已知导函数的图象,及表中几个点的坐标,易分析出0≤t≤5,均能保证x∈[-1,t]时,f(x)的最大值是2,进而判断C的真假,
根据已知导函数的图象,易分析出f(x)在[0,2]上的单调性,可判断D的真假;

解答 解:由图象不能判断y出f(x)是否为周期函数,故A不正确;
由f(x)=a,因为极小值f(2)未知,所以无法判断函数y=f(x)-a有几个零点,所以B不正确;
由已知中y=f′(x)的图象,及表中数据可得当x=0或x=4时,函数取最大值2,若x∈[-1,t]时,f(x)的最大值是2,那么0≤t≤5,故t的最大值为5,即C不正确;
由已知中y=f′(x)的图象可得在[0,2]上f′(x)<0,即f(x)在[0,2]是减函数,即D正确;
故选:D.

点评 本题考查的知识点是命题的真假判断,利用导数研究函数的单调性,其中根据已知,分析出函数的大致形状,利用图象分析函数的性质是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是(  )
A.B.C.12πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,角A,B,C所对的边分别为a,b,c,a=1,b=$\sqrt{3}$,B=60°,那么角A等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数f(x)满足f(1)=1,且对任意的x∈R,都有f′(x)<$\frac{1}{2}$,则不等式f(log2x)>$\frac{lo{g}_{2}x+1}{2}$的解集为(  )
A.(1,+∞)B.(0,1)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一次智力竞赛中,每位参赛者要从5道题中不放回地依次抽取2道题作答,已知5道题中包含自然科学题3道,人文科学题2道.则参赛者甲连续两次都抽到自然科学题的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足a1=1,an+1•$\sqrt{\frac{1}{a_n^2}+4}$=1,令bn=an2•an+12,Sn是数列{bn}的前n项和,若Sn>$\frac{m}{16}$对任意n∈N*恒成立,则整数m的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,若sinA=$\frac{sinB+sinC}{cosB+cosC}$
(1)判断三角形的形状;
(2)如果三角形面积为4,求三角形周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{sinA-sinC}{sinA+sinB}$=$\frac{a-b}{c}$,b=$\sqrt{7}$,cos2C=$\frac{1}{28}$.
(Ⅰ)求B,a的值;
(Ⅱ)若A>$\frac{π}{6}$,如图,D为边BC中点,P是边AB上动点,求|CP|+|PD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.0,1,2,3,4用五个数字,共可组成五位数的偶数有60个.

查看答案和解析>>

同步练习册答案