精英家教网 > 高中数学 > 题目详情
13.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{sinA-sinC}{sinA+sinB}$=$\frac{a-b}{c}$,b=$\sqrt{7}$,cos2C=$\frac{1}{28}$.
(Ⅰ)求B,a的值;
(Ⅱ)若A>$\frac{π}{6}$,如图,D为边BC中点,P是边AB上动点,求|CP|+|PD|的最小值.

分析 (Ⅰ)已知等式利用正弦定理化简,整理得到关系式,再利用余弦定理表示出cosB,将得出关系式代入求出cosB的值,确定出B的度数,由题意确定出sinC的值,再由b与sinB的值,利用正弦定理求出c的值,再利用余弦定理求出a的值即可;
(Ⅱ)由A>$\frac{π}{6}$,知a=2,作C关于AB的对称点C′,连C′D,C′P,C′B,如图所示,由余弦定理求出C′D的长,利用两点之间线段最短即可确定出|CP|+|PD|的最小值.

解答 解:(Ⅰ)已知等式利用正弦定理化简得:$\frac{sinA-sinC}{sinA+sinB}$=$\frac{a-c}{a+b}$=$\frac{a-b}{c}$,
整理得:a2+c2-b2=ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∵B为△ABC的内角,
∴B=$\frac{π}{3}$;
由cos2C=$\frac{1}{28}$,得到sinC=$\sqrt{\frac{27}{28}}$,
∵b=$\sqrt{7}$,sinB=$\frac{\sqrt{3}}{2}$,
由正弦定理得:$\frac{c}{sinC}$=$\frac{b}{sinB}$,即$\frac{c}{\sqrt{\frac{27}{28}}}$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$,
解得:c=3,
由b2=a2+c2-ac,得7=a2+9-3a,即a2-3a+2=0,
解得:a=1或a=2;
(Ⅱ)由A>$\frac{π}{6}$,知a=2,作C关于AB的对称点C′,连C′D,C′P,C′B,
由余弦定理得:|C′D|2=|BD|2+|BC′|2+|BD|•|BC′|=12+22+2=7,
|CP|+|PD|=|C′P|+|PD|≥|C′D|=$\sqrt{7}$,
当C′,P,D共线时取等号,
则CP+PD的最小值为$\sqrt{7}$.

点评 此题考查了正弦、余弦定理,对称的性质,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,则下列说法正确的是(  )
A.f(x)的单调递减区间为(1,3)B.x=3是函数f(x)的极小值点
C.f(x)的单调递减区间为(0,1)∪(3,+∞)D.x=1是函数f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为[-1,5],部分对应值如表.f(x)的导函数y=f′(x)的图象如图所示.
x-1045
f(x)1221
下列关于函数f(x)的命题说法正确的是(  )
A.函数y=f(x)是周期函数
B.当1<a<2时,函数y=f(x)-a有4个零点
C.如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4
D.函数f(x)在[0,2]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-$\frac{x^2}{a}$+alnx.
(1)判断函数f(x)在定义域上的增减性;
(2)若f'(x)-$\frac{1}{a}$+2x≥-$\frac{2x}{a}$+$\frac{a-2}{x}$在(0,+∞)上恒成立,求a的取值范围;
(3)设函数g(x)=(${\frac{1}{a}$+b)x2+cx(其中a,b,c为实常数),已知曲线h(x)=f(x)+g(x)在x=1处的切线与曲线m(x)=2x2+x-1在x=2处切线是同一条直线,且函数h(x)无极值点且h′(x)存在零点,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},0≤x<2}\\{f(x-2),x≥2}\end{array}\right.$,若对于正数kn (n∈N*),关于x的函数g(x)=f(x)-knx 的零点个数恰好为2n+1个,则k12+k22+…+kn2=(  )
A.$\frac{1}{8n}$B.$\frac{n}{n+1}$C.$\frac{n}{4n+4}$D.$\frac{n}{4n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知(2x2+$\frac{1}{\sqrt{x}}$)n的展开式中各项系数和为an,各项二项式系数和为bn
(1)若上述展开式中含有常数项,求正整数n的最小值;
(2)判断2an与(n+2)bn(n∈N+)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,an+1=2an+1(n∈N*),则数列{nan}的前9项和为981.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角三角形ABC中,AC=8,BC=7,sinB=$\frac{4\sqrt{3}}{7}$,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}中,a5=48,a15=3,求a20

查看答案和解析>>

同步练习册答案