精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,则下列说法正确的是(  )
A.f(x)的单调递减区间为(1,3)B.x=3是函数f(x)的极小值点
C.f(x)的单调递减区间为(0,1)∪(3,+∞)D.x=1是函数f(x)的极小值点

分析 求出函数的导数,得到函数的单调区间,从而求出函数的极值点即可.

解答 解:∵f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,定义域是(0,+∞),
∴f′(x)=-x+4-$\frac{3}{x}$=-$\frac{(x-1)(x-3)}{x}$,
令f′(x)>0,解得:1<x<3,令f′(x)<0,解得:0<x<1或x>3,
故函数f(x)在(0,1)递减,(1,3)递增,(3,+∞)递减,
故x=1是函数的极小值点,
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=(\sqrt{3}cosx-sinx)sinx$,x∈R.
(Ⅰ)求函数f(x)的最小正周期与单调增区间;
(Ⅱ)求函数f(x)在$[{0,\frac{π}{4}}]$上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是(  )
A.B.C.12πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面几种推理过程是演绎推理的是(  )
A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人
B.根据三角形的性质,可以推测空间四面体的性质
C.平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分
D.在数列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$,n∈N*,计算a2,a3,由此归纳出{an}的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知F1,F2分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦点,点F1关于渐近线的对称点恰好在以F2为圆心,|OF2|(O为坐标原点)为半径的圆上,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(-1,3)、B(3,2)、C(-4,5)、D(-3,4),则向量$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{5\sqrt{2}}{2}$B.-$\frac{5\sqrt{2}}{2}$C.$\frac{5\sqrt{17}}{17}$D.-$\frac{5\sqrt{17}}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,角A,B,C所对的边分别为a,b,c,a=1,b=$\sqrt{3}$,B=60°,那么角A等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数f(x)满足f(1)=1,且对任意的x∈R,都有f′(x)<$\frac{1}{2}$,则不等式f(log2x)>$\frac{lo{g}_{2}x+1}{2}$的解集为(  )
A.(1,+∞)B.(0,1)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{sinA-sinC}{sinA+sinB}$=$\frac{a-b}{c}$,b=$\sqrt{7}$,cos2C=$\frac{1}{28}$.
(Ⅰ)求B,a的值;
(Ⅱ)若A>$\frac{π}{6}$,如图,D为边BC中点,P是边AB上动点,求|CP|+|PD|的最小值.

查看答案和解析>>

同步练习册答案