| A. | (1,+∞) | B. | (0,1) | C. | (0,2) | D. | (2,+∞) |
分析 设g(x)=f(x)-$\frac{1}{2}$x,由f′(x)<$\frac{1}{2}$,得到g′(x)小于0,得到g(x)为减函数,将所求不等式变形后,利用g(x)为减函数求出x的范围,即为所求不等式的解集.
解答 解:设g(x)=f(x)-$\frac{1}{2}$x,
∵f′(x)<$\frac{1}{2}$,
∴g′(x)=f′(x)-$\frac{1}{2}$<0,
∴g(x)为减函数,又f(1)=1,
∴f(log2x)>$\frac{lo{g}_{2}x+1}{2}$=$\frac{1}{2}$log2x+$\frac{1}{2}$,
即g(log2x)=f(log2x)-$\frac{1}{2}$log2x>$\frac{1}{2}$=g(1)=f(1)-$\frac{1}{2}$=g(log22),
∴log2x<log22,又y=log2x为底数是2的增函数,
∴0<x<2,
则不等式f(log2x)>$\frac{lo{g}_{2}x+1}{2}$的解集为(0,2).
故选:C.
点评 此题考查了其他不等式的解法,涉及的知识有:利用导数研究函数的增减性,对数函数的单调性及特殊点,以及对数的运算性质,是一道综合性较强的试题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的单调递减区间为(1,3) | B. | x=3是函数f(x)的极小值点 | ||
| C. | f(x)的单调递减区间为(0,1)∪(3,+∞) | D. | x=1是函数f(x)的极小值点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3或$\frac{1}{3}$ | C. | $-\frac{1}{3}$ | D. | -3或$-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
| A. | 函数y=f(x)是周期函数 | |
| B. | 当1<a<2时,函数y=f(x)-a有4个零点 | |
| C. | 如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4 | |
| D. | 函数f(x)在[0,2]上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com