分析 首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在以F2为圆心,|OF2|为半径的圆上,可得直角三角形,即可求出双曲线的离心率.
解答 解:由题意,F1(-c,0),F2(c,0),
设一条渐近线方程为y=-$\frac{b}{a}$x,则F1到渐近线的距离为$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b.
设F1关于渐近线的对称点为M,F1M与渐近线交于A,
可得|MF1|=2b,A为F1M的中点,
又0是F1F2的中点,∴OA∥F2M,则∠F1MF2为直角,
由△MF1F2为直角三角形,
由勾股定理得4c2=c2+4b2
即有3c2=4(c2-a2),即为c2=4a2,
即c=2a,则e=$\frac{c}{a}$=2.
故答案为:2.
点评 本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的单调递减区间为(1,3) | B. | x=3是函数f(x)的极小值点 | ||
| C. | f(x)的单调递减区间为(0,1)∪(3,+∞) | D. | x=1是函数f(x)的极小值点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20\sqrt{6}}{3}$ 米 | B. | 10$\sqrt{6}$ 米 | C. | $\frac{10\sqrt{6}}{3}$ 米 | D. | 20$\sqrt{2}$ 米 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3或$\frac{1}{3}$ | C. | $-\frac{1}{3}$ | D. | -3或$-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8n}$ | B. | $\frac{n}{n+1}$ | C. | $\frac{n}{4n+4}$ | D. | $\frac{n}{4n+1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com