精英家教网 > 高中数学 > 题目详情
18.设$a={log_{\frac{1}{3}}}\frac{1}{2},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{4}{3}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵1>a=log32>$lo{g}_{3}\sqrt{3}$=$\frac{1}{2}$,b=log23>$lo{g}_{2}\sqrt{8}$=$\frac{3}{2}$,c=$lo{g}_{3}\frac{4}{3}$<$lo{g}_{3}\sqrt{3}$=$\frac{1}{2}$.
∴b>a>c.
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)+(4-2a)x+2(x∈[1,2]),求函数g(x)的最小值h(a).
(3)若f(x)≤-2at+4对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax2-3x,且x=1在处函数取得极值.
(1)求f(x)的单调区间;   
(2)若g(x)=x2-2x-1(x>0)
①证明:g(x)的图象不能在y=f(x)图象的下方;
②证明不等式(2n+1)2>4ln(n!)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\frac{1}{3}$x-lnx(x>0),则函数f(x)(  )
A.在区间(0,1)内有零点,在区间(1,+∞)内无零点
B.在区间(0,1)内有零点,在区间(1,+∞)内有零点
C.在区间(0,3),(3,+∞)均无零点
D.在区间(0,3),(3,+∞)均有零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高校在2016年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率;
(2)根据样本频率分布直方图估计样本的中位数;
(3)如果从“优秀”和“良好”的学生中分别选出3人与2人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对?x∈(0,+∞)不等式(2x-2a+ln$\frac{x}{a}$)(-2x2+ax+5)≤0恒成立,则实数a的取值集合为{$\sqrt{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知xy>0,则$\frac{y}{x+y}+\frac{2x}{2x+y}$的最小值为(  )
A.$4+2\sqrt{2}$B.$4-2\sqrt{2}$C.$2+\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.极坐标方程3ρsin2θ+cosθ=0表示的曲线是(  )
A.抛物线B.双曲线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知-2,a1,a2,-8成等差数列,-2,b1,b2,b3,-8成等比数列,则$\frac{{a}_{2}-{a}_{1}}{{b}_{2}}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案