精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=$\frac{1}{3}$x-lnx(x>0),则函数f(x)(  )
A.在区间(0,1)内有零点,在区间(1,+∞)内无零点
B.在区间(0,1)内有零点,在区间(1,+∞)内有零点
C.在区间(0,3),(3,+∞)均无零点
D.在区间(0,3),(3,+∞)均有零点

分析 求出函数的导数,判断函数的极值以及单调性,然后利用零点判定定理推出选项.

解答 解:函数$f(x)=\frac{1}{3}x-lnx(x>0)$,
则f′(x)=$\frac{1}{3}-$$\frac{1}{x}$,令$\frac{1}{3}-\frac{1}{x}$=0可得x=3,显然x∈(0,3)时,f′(x)<0,函数是减函数,
x∈(3,+∞)f′(x)>0,函数是增函数.
并且f(1)=$\frac{1}{3}$,f(3)=1-ln3<0,
函数在在区间(0,3),(3,+∞)均有零点.
故选:D.

点评 本题考查函数的导数的应用,函数的零点判定定理的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|2x>1},集合B={x||x|≤2},则A∩B=(  )
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四棱锥VABCD的底面为边长等于2cm的正方形,顶点V与底面正方形中心的连线为棱锥的高,侧棱长VC=4cm,求这个正四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=f2(x)-2bf(x)+3有8个不同的零点,则实数b的取值范围为($\sqrt{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设各项均为正数的数列{an}的前n项和为Sn,已知数列$\left\{{\sqrt{S_n}}\right\}$是首项为1,公差为1的等差数列.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$,若不等式b1+b2+b3+…+bn≥$\frac{m}{{\sqrt{2n+1}+1}}$对任意n∈N*都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的面积为1,∠A的平分线交对边BC于D,AB=2AC,且AD=kAC,k∈R,则当k=$\frac{2\sqrt{10}}{5}$时,边BC的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$a={log_{\frac{1}{3}}}\frac{1}{2},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{4}{3}$,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若存在正实数x,y,z满足$\frac{z}{2}$≤x≤ez且zln$\frac{y}{z}$=x,则ln$\frac{y}{x}$的取值范围为(  )
A.[1,+∞)B.[1,e-1]C.(-∞,e-1]D.[1,$\frac{1}{2}$+ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,该几何体的体积为3,则x的值为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案