精英家教网 > 高中数学 > 题目详情
空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是(  )
A.垂直B.平行
C.异面D.相交但不垂直
AB
=(-2,-1,6)-(1,2,3)=(-3,-3,3),
CD
=(4,3,0)-(3,2,1)=(1,1,-1).
AB
=-3
CD

AB
CD

∵点A不在直线AB上.
∴ABCD.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

平行四边形中,为折线,把折起,使平面平面,连接

(1)求证:
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在平行六面体ABCD-A1B1C1D1中,O为AC与BD的交点,若
A1B1
=
a
A1D1
=
b
AA1
=
c
,则向量
B1O
等于(  )
A.
1
2
a
+
1
2
b
+
c
B.
1
2
a
-
1
2
b
+
c
C.-
1
2
a
+
1
2
b
+
c
D.-
1
2
a
-
1
2
b
+
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
i
j
k
不共面,向量
a
=
i
-2
j
+
k
b
=-
i
+3
j
+2
k
c
=-3
i
+x
j
共面,则x=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱ABC—A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为(  )
A.30° B.45°C.60° D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是平面的法向量,则平面的位置关系式(   )
A.平行B.垂直
C.所成的二面角为锐角 D.所成的二面角为钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量,若不超过5,则的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

反向的单位向量,则的坐标为             

查看答案和解析>>

同步练习册答案