精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
(1)见解析;(2).

试题分析:(1)先利用直线与平面垂直的性质定理,得到 和 ,因为 ,所以利用直线与平面垂直的判定定理可知, ;(2)首先分别以射线轴,轴,轴的正半轴建立空间直角坐标系,由直线与平面垂直的性质定理得到,那么矩形为正方形,由此可知此正方形的边的长度,根据坐标系表示四棱锥出各个顶点的坐标,分别求出平面和平面的法向量的坐标,根据二面角与其法向量夹角的关系,求得二面角的余弦值,再由同角三角函数的基本关系得到所求二面角的正切值.
试题解析:(1)证明 ∵,∴.2分
同理由,可证得
,∴.                               4分
(2)如图,分别以射线轴,轴,轴的正半轴建立空间直角坐标系

由(1)知,又, ∴
故矩形为正方形,∴.     6分


设平面的一个法向量为,则,即
,取,得
,∴为平面的一个法向量.10分
所以.                  11分
设二面角的平面角为,由图知,所以
∴ 所以,即二面角的正切值为.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知在长方体中,点为棱上任意一点,.

(Ⅰ)求证:平面平面
(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,为边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,,E为PD点上一点,满足

(1)证明:平面ACE平面ABCD;
(2)求直线PD与平面ACE所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是(  )
A.垂直B.平行
C.异面D.相交但不垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,MN分别是A1B1BB1的中点,那么直线AMCN所成角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.

(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问多大时,AM⊥平面PDB可能成立?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(I)求证:A1C⊥平面BCDE;
(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积。

查看答案和解析>>

同步练习册答案