精英家教网 > 高中数学 > 题目详情
18.解不等式:4x-9•2x+1+32≤0.

分析 求解关于2x的一元二次不等式,得到2x的范围,再求解指数不等式得答案.

解答 解:由4x-9•2x+1+32≤0,得
(2x2-18+32≤0,即2≤2x≤16,∴1≤x≤4.
∴原不等式的解集为[1,4].

点评 本题考查一元二次不等式与指数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设2x2-3x+1≤0的解集为A,x2-(2a+1)x+a(a+1)≤0的解集为B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若c2+ab=a2+b2,则角C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等$\frac{1}{a-b}+\frac{1}{b-c}+\frac{λ}{c-a}<0$对满足a>b>c恒成立,则λ的取值范围 (  )
A.(-∞,0]B.(-∞,1)C.(-∞,4]D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则$\frac{{S}_{n}+4}{n}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=${{log}^{2}}_{\frac{1}{3}}x$${+log}_{\frac{1}{3}}x$,
(1)当0≤log3x≤2时,求函数y的值域:
(2)求函数y的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断函数f(x)=2x+$\frac{2}{x}$,x∈[$\frac{1}{2}$,3]的单调性,并求出它的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.根据下列条件,确定数列{an}的通项公式.
(1)a1=2,an+1=an+ln(1+$\frac{1}{n}$);
(2)a1=1,an=$\frac{n-1}{n}{a}_{n-1}$(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$为奇函数
(1)求a,b的值
(2)证明f(x)在(-∞,+∞)上是减函数.

查看答案和解析>>

同步练习册答案