精英家教网 > 高中数学 > 题目详情
(理)由曲线y2=8x与直线y=2x-8围成的封闭图形的面积(  )
A、24B、36C、42D、48
考点:定积分在求面积中的应用
专题:导数的综合应用
分析:求出两条曲线的交点坐标,根据积分的几何意义进行求解即可.
解答: 解:作出两条曲线对应的平面区域如图:
将y=2x-8代入y2=8x得x2-10x+16=0,
解得x=2或x=8,当x=2时,y=-4,
当x=8时,y=8,
则根据积分的几何意义可知所求区域的面积S=
8
-4
(
y+8
2
-
y2
8
)dy
=(
1
4
y2+4y-
1
24
y3
)|
 
8
-4
=36,
故选:B
点评:不提主要考查积分的几何意义,根据函数积分的运算法则是解决本题的关键,综合性较强,运算量较大,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前n项和为Sn,向量
a
=(2,n)
b
=(n+1,Sn)
,且
a
b
,λ∈R.
(1)求数列{an}的通项公式;
(2)求{
1
anan+2
}
的前n项和Tn,不等式Tn
3
4
loga
(1-a)对任意的正整数n恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数x∈[
1
3
,2]满足2x>a-
2
x
,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-x+1)10展开式中x3项的系数为(  )
A、-210B、210
C、30D、-30

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
0≤x≤2
x+y-2≥0
x-y+2≥0
,则目标函数z=3x-4y的最小值m与最大值M的积为(  )
A、-60B、-48
C、-80D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是平面,m,n是直线,且m⊥α,则下列命题不正确的是(  )
A、若m∥n,则n⊥a
B、若n⊥α,则m∥n
C、若n∥α,则m⊥n
D、若m⊥n,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

如果loga8>logb8>0,那么a、b间的关系是(  )
A、0<a<b<1
B、1<a<b
C、0<b<a<1
D、1<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx②f(x)=cosx③f(x)=e|x|④f(x)=|lnx|,则输出的函数的个数为(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

设数{an}满足:a1+a2+a3+…+an=n-an(n∈N*).
(1)求证:数列{an-1}是等比数列;
(2)若bn=(2-n)(an-1),且对任意的正整数n,都有bn+
1
4
t≤t2,求实数t的取值范围.

查看答案和解析>>

同步练习册答案