下列说法:
①“
”的否定是“
”;
②函数
的最小正周期是
;
③命题“函数
在
处有极值,则
”的否命题是真命题;
④
是
上的奇函数,
时的解析式是
,
则
时的解析式为
.
其中正确的说法是_________.
科目:高中数学 来源:2014-2015学年新疆师范大学附属中学高三12月月考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)已知
为抛物线
的焦点,点![]()
为其上一点,点M与点N关于x轴对称,直线
与抛物线交于异于M,N的A,B两点,且![]()
(1)求抛物线方程和N点坐标;
(2)判断直线
中,是否存在使得
面积最小的直线
,若存在,求出直线
的方程和
面积的最小值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2014-2015学年山东省枣庄市高三第二次(1月)学情调查理科数学试卷(解析版) 题型:解答题
(本小题满分14分)设函数
.
(1)若函数
在
上为减函数,求实数
的最小值;
(2)若存在
,使
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年山东省枣庄市高三第二次(1月)学情调查理科数学试卷(解析版) 题型:选择题
已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是 ( )
![]()
A.48cm3 B.98cm3 C.88cm3 D.78cm3
查看答案和解析>>
科目:高中数学 来源:2014-2015学年江西省高三上学期期末考试文科数学试卷(解析版) 题型:解答题
(12分)已知焦点在
轴,顶点在原点的抛物线
经过点
,以抛物线
上一点
为圆心的圆过定点
(0,1),记
为圆
与
轴的两个交点.
(1)求抛物线
的方程;
(2)当圆心
在抛物线上运动时,试判断
是否为一定值?请证明你的结论;
(3)当圆心
在抛物线上运动时,记
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年江西省高三上学期期末考试文科数学试卷(解析版) 题型:选择题
设
、
分别为双曲线
的左、右焦点.若在双曲线右支上存在点
,满足
,且
到直线
的距离等于双曲线的实轴长,则该双曲线的离心率为( )
A.
B.2 C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年湖南省、攸县一中、醴陵一中高三12月联考文科数学试卷(解析版) 题型:选择题
一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过,其中
,它可能随机在草原上任何一处(点),若落在扇形沼泽区域ADE以外丹顶鹤能生还,则该丹顶鹤生还的概率是( )![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年黑龙江省大庆市高三第二次质量检测文科数学试卷(解析版) 题型:选择题
已知函数
且
有两个零点
、
,则有( )
(A)
(B)
(C)
(D)
的范围不确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com