精英家教网 > 高中数学 > 题目详情
不等式(x-5)2(x-4)>0的解集为
 
考点:其他不等式的解法
专题:不等式的解法及应用
分析:由不等式(x-5)2(x-4)>0,可得x-4>0且x≠5,由此求得不等式的解集.
解答: 解:由不等式(x-5)2(x-4)>0,可得x-4>0且x≠5,
故不等式的解集为{x|x>4,且 x≠5},
故答案为:{x|x>4,且 x≠5}.
点评:本题主要考查高次不等式的解法,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是△ABC的三个内角,向量
a
=(4cos2
A+B
2
,1),
b
=(1,2sin2
A-B
2
-3).若
a
b
,求tanA•tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(log318-log32)-(2log510+log50.25)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12).
(1)求cos∠AOB和△AOB的面积;
(2)若四边形AEBF为平行四边形,且
EF
=(1,1),求平行四边形AEBF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B2C3的底面是边长为4正三角形,AA1⊥平面ABC,AA1=2
6
,M为A1B1的中点.
(Ⅰ)求证:MC⊥AB;
(Ⅱ)在棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,确定点P的位置;若不存在,说明理由.
(Ⅲ)若点P为CC1的中点,求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在无穷等比数列{an}中,首项a1,公比q>0,且
lim
n→∞
(
a1
1+q
+qn)=
1
2
,则a1的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD的所有棱长都是1,则截面PAC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出了四个类比推理:
(1)由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若a,b,c为三个向量则(
a
b
)•
c
=
a
•(
b
c
)”;
(2)“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1,z2为复数,若
z
2
1
+
z
2
2
=0则z1=z2=0
”;
(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案