精英家教网 > 高中数学 > 题目详情
19.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}$-y2=1上的一点,F1、F2是C的两个焦点,若$\overrightarrow{{MF}_{1}}$•$\overrightarrow{{MF}_{2}}$<0,则y0的取值范围是(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$).

分析 利用向量的数量积公式,结合双曲线的方程,即可求出y0的取值范围.

解答 解:由题意,$\overrightarrow{{MF}_{1}}$•$\overrightarrow{{MF}_{2}}$=(-$\sqrt{3}$-x0,-y0)•($\sqrt{3}$-x0,-y0)=x02-3+y02=3y02-1<0,
∴-$\frac{\sqrt{3}}{3}$<y0<$\frac{\sqrt{3}}{3}$.
故答案为:(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$).

点评 本题考查向量的数量积公式、双曲线的方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9. 如图,斜四边形ABCD-A1B1C1D1的底面是边长为8cm的正方形,侧棱AA1成为12cm,且上底面的顶点A1与下底面各点间的距离相等,则四棱柱的侧面积是$32\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线x2=2py(p>0)的焦点与双曲线x2-y2=-$\frac{1}{2}$的一个焦点重合,且在抛物线上有一动点P到x轴的距离为m,P到直线l:2x-y-4=0的距离为n,则m+n的最小值为(  )
A.$\sqrt{5}$+1B.$\sqrt{5}$-1C.$\sqrt{5}$D.2$\sqrt{5}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ln$\frac{x+1}{2}$+$\frac{1-x}{a(x+1)}$(a>0).
(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)求证:当n∈N*且n>2时,$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$+…+$\frac{1}{n}$<lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知n∈N*,求证:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若x∈R,不等式|x-1|+|x-2|≤a的解集为非空集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a>b>0,求证:$\frac{{(a-b)}^{2}}{8a}$<$\frac{a+b}{2}$-$\sqrt{ab}$<$\frac{(a-b)^{2}}{8b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC为等腰直角三角形,∠ACB=90°,PA⊥面ABC,AC=a,PA=$\sqrt{2}$a.
(1)求证:PC⊥BC;
(2)求二面角A-PB-C的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:
(1)$\frac{1-{a}^{-\frac{1}{2}}}{1+{a}^{-\frac{1}{2}}}$-$\frac{2{a}^{\frac{1}{2}}}{a-1}$;
(2)2${\;}^{3+lo{g}_{2}5}$;
(3)lg5•lg20+(lg2)2

查看答案和解析>>

同步练习册答案