精英家教网 > 高中数学 > 题目详情
已知α、β均为锐角,且cos(α+β)=
12
13
,cos(2α+β)=
3
5
,求cosα的值.
考点:两角和与差的余弦函数
专题:计算题,三角函数的求值
分析:由α=(2α+β)-(α+β),利用两角和的余弦公式可求cosα的值.
解答: 解:∵α、β均为锐角,
∴0<α+β<π,0<2α+β<
2

∵cos(α+β)=
12
13
,cos(2α+β)=
3
5

∴sin(α+β)=
5
13
,sin(2α+β)=
4
5

∴cosα=cos[(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)=
3
5
×
12
13
+
4
5
×
5
13
=
56
65
点评:把“待求角”用“已知角”的和、差、倍、补、余表示出来是常用角的变换,也是本题解题的关键,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线x=
1
3
y2
的焦点的坐标是(  )
A、(
3
4
,0)
B、(0,
1
6
)
C、(
1
12
,0)
D、(0,
1
12
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=
2
3
a,如图.
(1)求证:MN∥面BB1C1C;
(2)求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设四面体ABCD的六条棱的长分别为1,1,
2
2
2
2
,则其外接球的表面积为(  )
A、
2
B、
3
C、
4
6
π
27
D、
8
6
π
27

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(-3x+
π
6
)
的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=-2,Sn=2an-3n(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

将13个相同的小球放入编号为1,2,3,4的四个盒中,每个盒中放入的小球数不少于盒子的编号数,则不同的放法共有
 
种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(
π
4
+x)
=
3
5
17
12
π<x<
7
4
π,求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知不等式x2+bx+c>0的解集是{x|x<2或x>3},求b、c的值;
(2)已知二次不等式ax2+bx+c<0的解集为{x|x<
1
3
或x>
1
2
},求关于x的不等式cx2-bx+a>0的解集.

查看答案和解析>>

同步练习册答案