精英家教网 > 高中数学 > 题目详情
18.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)
①根据频率分布直方图算出样本数据的中位数为2400
②为了分析居民的收入与年龄、职业等方面的关系,按月收入从这10 000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取25人.

分析 ①根据中位数是所有数据中的中间值,在频率分布直方图中左右两边频数应相等,频率也相等,从而就是小矩形的面积和相等,由此求出结果;
②求出月收入在[2500,3000)的频率,用分层抽样的抽取比例乘以样本容量,可得答案.

解答 解:①根据中位数是所有数据中的中间值,在频率分布直方图中是左右两边频数应相等,即频率也相等;
且0.0002×500+0.0004×500=0.3,
前2个小矩形面积的和为0.3,第3个小矩形面积为0.0005×500=0.25,0.3+0.25>0.5,
∴中位数位于第3个小矩形内.设其底边为x,高为0.0005,
∴令0.0005x=0.2,解得x=400,故中位数为2000+400=2400;
②月收入为[2500,3000)内的频率为0.0005×500=0.25,
样本容量为100,
所以应抽取的人数为100×0.25=25.
故答案为:①2400,②25.

点评 本题考查了频率分布直方图,分层抽样方法的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列关于命题正确的个数为(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
②“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件;
③若p∨q为真命题,则p∧q为真命题.
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”
⑤当x>0时,恒有x>sinx.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)的导函数为f′(x),且$ef(x)-{f^'}(1){e^x}+ef(0)x-\frac{1}{2}e{x^2}=0$.
(1)求f(x)的解析式;
(2)若方程$f(x)-\frac{1}{2}{x^2}-m=0$在区间[-1,2]上恰有两个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=lnx+tanα(α∈(0,\frac{π}{2}))$的导函数为f′(x),若存在0<x0<1使得f′(x0)=f(x0)成立,则实数α的取值范围是($\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数是偶函数又在(0,+∞)上递减的是(  )
A.y=x2+1B.y=|x|C.y=-x2+1D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i1=i,i2=-1,i3=-i,i4=1,i5=i,由此可猜想i2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.与圆C1:(x+3)2+y2=1,圆C2:(x-3)2+y2=9同时外切的动圆圆心的轨迹方程是(  )
A.$\frac{y^2}{8}$-x2=1B.x2-$\frac{y^2}{8}$=1C.x2-$\frac{y^2}{8}$=1(x≥1)D.x2-$\frac{y^2}{8}$=1(x≤-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若方程$\frac{x^2}{k-4}$+$\frac{y^2}{k+1}$=1表示的曲线是双曲线,则k的取值范围是(-1,4).

查看答案和解析>>

同步练习册答案