分析 (Ⅰ)由BC∥平面PAD,推导出l∥BC.
(Ⅱ)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE.
解答
(Ⅰ)证明:∵在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=90°,
∴AD∥BC,AD?平面PAD,BC?平面PAD,
∴BC∥平面PAD,
又平面PBC过BC,且与平面PAD交于l,
∴BC∥l;
(Ⅱ)解:连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE,
此时AE:EP=AO:OC=AD:BC=$\sqrt{2}$:2$\sqrt{2}$=1:2.
点评 本题考查了线面平行的判定定理和性质定理的运用;关键是适当作辅助线,将问题转化为线线关系解答.
科目:高中数学 来源: 题型:解答题
| 动作 | K | D | ||
| 得分 | 100 | 80 | 40 | 10 |
| 概率 | $\frac{3}{4}$ | $\frac{1}{4}$ | $\frac{3}{4}$ | $\frac{1}{4}$ |
| 动作 | K | D | ||
| 得分 | 90 | 50 | 20 | 0 |
| 概率 | $\frac{9}{10}$ | $\frac{1}{10}$ | $\frac{9}{10}$ | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 虚数集和各个象限内的点的集合是一一对应的 | |
| B. | 实、虚部都是负数的虚数的集合与第二象限的点的集合是一一对应的 | |
| C. | 实部是负数的复数的集合与第二、三象限的点的集合是一一对应的 | |
| D. | 实轴上侧的点的集合与虚部为正数的复数的集合是一一对应的 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x>1,则x2>1”的逆命题 | B. | 命题“若x=1,则x2+x-2=0”的否命题 | ||
| C. | 命题“若x>y,则x>|y|”的逆命题 | D. | 命题“若x2>0,则x>-1”的逆否命题 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com