精英家教网 > 高中数学 > 题目详情
某林区2011年的木材蓄积量为200万m3,由于采取了封山育林、严禁采伐等措施,使木材蓄积量的年平均增长率达到了8%.求要经过多少年,该林区的木材蓄积量基本达到翻两番的目标.(lg2=0.3010,lg3=0.4771)
考点:等比数列的通项公式
专题:等差数列与等比数列
分析:由题意,年平均增长率相同,从2011年起,该林区每年的木材蓄积量组成一个等比数列{an}.从而得到:200(1+8%)n=800,由此能求出结果.
解答: 解:由题意,每年的木材蓄积量比上一年增加的百分率,
即年平均增长率相同,
所以从2011年起,该林区每年的木材蓄积量组成一个等比数列{an}.
其中a1=200,q=1+8%,an=800--(3分)
于是得到:200(1+8%)n=800--(5分)
化简得:(
27
25
)n=4

两边取对数得:n(3lg3+lg2-2)=2lg2--(8分)
n=
2lg2
3lg3+lg2-2
≈18
(年)--(11分)
答:经过多少18年,该林区的木材蓄积量基本达到翻两番的目标.--(12分)
点评:本题考查等比数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xoy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足
PA
PB
=4,点Q是点P关于直线y=x的对称点.
(Ⅰ)求点A、B的坐标;
(Ⅱ)求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)计算a2,a3,a4的值,猜想数列{an}的通项公式,并用数学归纳法证明;
(2)若p,q,r是三个互不相等的正整数,且p,q,r成等差数列,试判断ap,aq,ar是否成等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知A、B是抛物线y2=4x上的两点,点M(4,0)满足:
MA
BM
,动点P满足
AP
=
OB

①求P点轨迹方程;
②若直线AB与圆:(x-1)2+y2=1相离,求λ取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点为B(0,-3),离心率为
2
2

(1)求椭圆方程;
(2)过点A(0,1)且斜率为k的直线l交椭圆于M、N两点,求证:BM⊥BN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在200m高的山顶A处,测得山下一塔顶B与塔底C的俯角分别是30°,
60°,求塔高BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin2θ+6cos2θ=2,且θ∈(0,
3
)
,则tanθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方向向量为
v
=(1,-1,-2),平面α的法向量
u
=(-2,-1,1),则l与α的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线型拱的顶点距离水面2米时,测量水的宽为8米,当水面上升
1
2
米后,水面的宽度是
 
米.

查看答案和解析>>

同步练习册答案