精英家教网 > 高中数学 > 题目详情
9.在等差数列中,已知a4+a17=8,求S20

分析 利用等差数列的前n项和公式和通项公式求解.

解答 解:∵在等差数列中,a4+a17=8,
∴S20=$\frac{20}{2}({a}_{4}+{a}_{7})$=$\frac{20}{2}×8=80$.

点评 本题考查等差数列的前20项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知0<x<2π,且满足$\sqrt{\frac{1+cosx}{1-cosx}}$-$\sqrt{\frac{1-cosx}{1+cosx}}$=-$\frac{2}{tanx}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}中,a1=$\frac{1}{2}$,$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n+1}}$+5(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},C={x|x=4a+1,a∈Z},则m+n属于集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=2,a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n}$an=an+1-2(n∈N*).
(1)求数列{an}通项公式;
(2)若bn=an•($\frac{\sqrt{3}}{3}$)${\;}^{{a}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求3x2+$\frac{1}{2{x}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2$\sqrt{3}$sinxcosx+1-2sin2x,x∈R,将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的$\frac{1}{2}$,把所得到的图象再向左平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求:
(Ⅰ)函数g(x)的解析式和单调递增区间;
(Ⅱ)函数g(x)在区间[-$\frac{π}{6}$,-$\frac{π}{24}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{{x}^{2}-3x+3}{x-1}$(x>1)的值域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=ln(x2+2016)+|2015x|,当f(2m-1)>f(m-1),则m的取值范围是(  )
A.m>0B.m<0C.m$>\frac{2}{3}$或m<0D.m>1

查看答案和解析>>

同步练习册答案