精英家教网 > 高中数学 > 题目详情
函数f(x)=
x-4
3-x
的值域为(  )
A、{y|y≠-1}
B、{y|y≠4}
C、{y|y≠3}
D、{y|y≠
1
2
}
考点:函数的值域
专题:函数的性质及应用
分析:化简函数f(x)=-1+
1
x-3
,利用函数y=
1
x-3
的值域为(-∞,0)∪(0,+∞)求解.
解答: 解:∵函数f(x)=
x-4
3-x

∴函数f(x)=-1+
1
x-3

∵函数y=
1
x-3
的值域为(-∞,0)∪(0,+∞)
∴函数y=-1+
1
x-3
的值域为:(-∞,-1)∪(-1,+∞),
故选:A.
点评:本题考查了函数的性质,运用求解分式函数的值域问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(π-α)=-
5
13
,且α是第四象限角,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的递增等差数列且a22=S3
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
2
anan+1
,Tn为数列{bn}的前n项和,若对任意的n∈N*,不等式λTn<n+8×(-1)n恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC中,角A,B,C所对的边分别为a,b,c,则“∠C>90°”的一个充分非必要条件是(  )
A、sin2A+sin2B<sin2C
B、sinA=
1
4
,(A为锐角),cosB=
3
4
C、c2>2(a+b-1)
D、sinA<cosB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|(x-2a)(x+a-1)≤0},B={x|
x-3
x+2
>0},若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,记f(n)=2an+1Sn-n(2Sn+an+1),n∈N*
(1)若数列{an}是首项与公差均为1的等差数列,求f(2015);
(2)若a1=1,a2=2,且数列{a2n-1}、{a2n}均是公比为4的等比数列,求证:对任意正整数n,f(n)≥n.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(6m-n)(m2+4n2)-(m2-n2)(m+2n).

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆C1
x2
12
+
y2
3
=1的焦点为焦点的椭圆C2经过直线L:x-y-1=0上的一点M,当M到两焦点距离之差的绝对值最大时,则椭圆C2的标准方程是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x2+y2≤4
12x-5y+13≥0
,则
|12x-5y+39|
13
的取值范围是(  )
A、[1,2]
B、[2,5]
C、[1,4]
D、[2,4]

查看答案和解析>>

同步练习册答案