精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
x2+y2≤4
12x-5y+13≥0
,则
|12x-5y+39|
13
的取值范围是(  )
A、[1,2]
B、[2,5]
C、[1,4]
D、[2,4]
考点:分段函数的应用
专题:计算题,作图题,不等式的解法及应用
分析:由题意作图,
|12x-5y+39|
13
表示了图中阴影部分与直线12x-5y+39=0的距离,从而求解.
解答: 解:由题意作图如下,
|12x-5y+39|
13
表示了图中阴影部分与直线12x-5y+39=0的距离,
故由于直线12x-5y+39=0与直线12x-5y+13=0的距离为2,
原点到直线12x-5y+39=0的距离为3,
故2≤
|12x-5y+39|
13
≤3+2=5.
故选B.
点评:本题考查了线性规划的变形应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x-4
3-x
的值域为(  )
A、{y|y≠-1}
B、{y|y≠4}
C、{y|y≠3}
D、{y|y≠
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(2ωx-
π
3
)+b,且该函数图象的对称中心到对称轴的最小距离为
π
4
,且当x∈[0,
π
3
]时,f(x)的最大值为1.
(1)求f(x)的函数的解析式;
(2)求f(x)的单调递减区间;
(3)若f(x)-3≤m≤f(x)+3在[0,
π
3
]上恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,点E在A′B上,点F在B′D′上,且BE=B′F,求证:EF∥平面BCC′B′.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
为一组基底,
OA
=-2
e1
-2
e2
OB
=m
e2
OC
=n
e1
,如果A、B、C三点共线,则
1
m
-
1
n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=lg(3-4x+x2)的定义域为M,当x∈M时,求f(x)=2x+1-3×4x的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.
(Ⅰ)求证:AO⊥平面B′OC;
(Ⅱ)当三棱锥B'-AOC的体积取最大时,求二面角A-B′C-O的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试问在线段B′A上是否存在一点P,使CP与平面B′OA所成的角的正弦值为
2
3
?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x+
π
3
),有下列结论:
①点(-
5
12
π,0)
是函数f(x)图象的一个对称中心;
②直线x=
π
3
是函数f(x)图象的一条对称轴;
③函数f(x)的最小正周期是π;
④函数f(x)的单调递增区间为[-
12
+kπ,
π
12
+kπ](k∈Z)

其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+m-1
2-x
,且f(1)=1
(1)求实数m的值;
(2)判断函数y=f(x)在你区间(-∞,m-1]上的单调性,并用函数单调性的定义证明
(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:①有且仅有一个实数解②有两个不同的实数解.

查看答案和解析>>

同步练习册答案