精英家教网 > 高中数学 > 题目详情
已知cos(π-α)=-
5
13
,且α是第四象限角,求sinα.
考点:运用诱导公式化简求值,同角三角函数基本关系的运用
专题:三角函数的求值
分析:直接利用诱导公式化简已知条件,然后利用同角三角函数的基本关系式求解即可.
解答: 解:cos(π-α)=-
5
13
,且α是第四象限角,
∴cosα=
5
13

∴sinα=-
1-cos2α
=-
1-(
5
13
)2
=-
12
13
点评:本题考查诱导公式的应用,三角函数的化简求值,同角三角函数的基本关系式的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx在(1,2]上是增函数,g(x)=x-a
x
在(0,1)上是减函数.
(1)求f(x)、g(x)的表达式;
(2)试判断关于x的方程
1
2
f(x)=g(x)+2在(0,+∞)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=5,AB=4,AD=3,求直线PC与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,SA⊥底面ABCD,底面为等腰梯形,AD∥BC,AB=1,BC=2,AC=
3
,SA=2,且四棱锥顶点都在同一球面上,则此四棱锥外接球表面积为(  )
A、4πB、5πC、7πD、8π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
a
ex
,其中a为实数,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,y>0,求
x-y
(1+x)(1+y)+xy
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解学生 的身体发育情况,某校对年满16周岁的60名男生的身高进行测量,其结果如下:
身高(m)
1.57

1.59

1.60

1.62

1.63

1.64

1.65

1.66

1.68

人数

2

1

4

2

3

4

2

7

6

身高(m)

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

人数

8

7

4

3

2

1

2

1

1
(1)根据上表,估计这所学校,年满16周岁的男生中,身高不低于1.65m且不高于1.71m的约占多少?不低于1.63m的约占多少?
(2)将测量数据分布6组,画出样本频率分布直方图;
(3)根据图形说出该校年满16周岁的男生在哪一范围内的人数所占的比例最大?如果年满16周岁的男生有360人,那么在这个范围的人数估计约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2alnx(a∈R),
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)+2x,若g(x)在[1,2]上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x-4
3-x
的值域为(  )
A、{y|y≠-1}
B、{y|y≠4}
C、{y|y≠3}
D、{y|y≠
1
2
}

查看答案和解析>>

同步练习册答案