【题目】第24届冬奥会将于2022年2月4日至2月22日在北京市和河北省张家口市联合举行,这是中国历史上第一次举办冬季奥运会.为了宣传冬奥会,让更多的人了解、喜爱冰雪项目,某校高三年级举办了冬奥会知识竞赛(总分100分),并随机抽取了
名中学生的成绩,绘制成如图所示的频率分布直方图.已知前三组的频率成等差数列,第一组和第五组的频率相同.
![]()
(Ⅰ)求实数
,
的值,并估计这
名中学生的成绩平均值
;(同一组中的数据用该组区间的中点值作代表)
(Ⅱ)已知抽取的
名中学生中,男女生人数相等,男生喜欢花样滑冰的人数占男生人数的
,女生喜欢花样滑冰项的人数占女生人数的
,且有95%的把握认为中学生喜欢花样滑冰与性别有关,求
的最小值.
参考数据及公式如下:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
,
.
科目:高中数学 来源: 题型:
【题目】已知抛物线
上的点
到焦点的距离为
.
![]()
(1)求
的值;
(2)如上图,已知动线段
(
在
的右边)在直线
上,且
,现过
作
的切线,取左边的切点
,过
作
的切线,取右边的切点为
,当
,求
点的横坐标
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的两个顶点坐标是
,
,
的周长为
,
是坐标原点,点
满足
.
(1)求点
的轨迹
的方程;
(2)若互相平行的两条直线
,
分别过定点
和
,且直线
与曲线
交于
两点,直线
与曲线
交于
两点,若四边形
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,平面四边形
中,
为直角,
为等边三角形,现把
沿着
折起,使得平面
与平面
垂直,且点M为
的中点.
![]()
(1)求证:平面
平面
;
(2)若
,求直线
与平面
所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程
,点
在直线
上,直线
与曲线
交于
两点.
(1)求曲线
的普通方程及直线
的参数方程;
(2)求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.
(1)设射线l的极坐标方程为
,若射线l与曲线C交于A,B两点,求AB的长;
(2)设M,N是曲线C上的两点,若∠MON
,求
的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com