精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,判断的单调性,并用定义证明.
(2)若对任意,不等式恒成立,求的取值范围;
(3)讨论零点的个数.
(1)单调递减函数;(2);(3)当时,有1个零点.当时,有2个零点;当时,有3个零点.

试题分析:(1)先根据条件化简函数式,根据常见函数的单调性及单调性运算法则,作出单调性判定,再用定义证明;(2)将题中所给不等式具体化,转化为不等式恒成立问题,通过参变分离化为,求出的最大值,则m的范围就是m大于的最大值;(3)将函数零点个数转化为方程解的个数,再转化为函数交点个数,运用数形结合思想求解.
试题解析:(1)当,且时,是单调递减的.       1分
证明:设,则



                                        3分
,所以
所以
所以,即
故当时,上单调递减的.                4分
(2)由
变形为,即


所以.               9分
(3)由可得,变为

的图像及直线,由图像可得:
时,有1个零点.
时,有2个零点;
时,有3个零点.                  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量.
(注:总收益=总成本+利润)
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km时,车流速度为60km/h,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

V为全体平面向量构成的集合,若映射f
V→R满足:
对任意向量a=(x1y1)∈Vb=(x2y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.
现给出如下映射:
f1V→R,f1(m)=xym=(xy)∈V;
f2V→R,f2(m)=x2ym=(xy)∈V;
f3V→R,f3(m)=xy+1,m=(xy)∈V.
分析映射①②③是否具有性质p.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对定义域分别是Df,Dg的函数y=f(x),y=g(x),规定:函数h(x)=
(1)若函数f(x)=,g(x)=x2,写出函数h(x)的解析式;
(2)求问题(1)中函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各组函数表示同一函数的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.
(1)对任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范围.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范围.
(3)对任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求实数a的取值范围.
(2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

同步练习册答案