精英家教网 > 高中数学 > 题目详情

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件需另投入成本当年产量不足80千件时,(万元);当年产量不小于80千件时(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.

(1)写出年利润(万元)关于年产量千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?

【答案】(1);(2).

【解析】

试题分析:(1)当,当;(2)分段函数两段分别用单调性和基本不等式求最小值,在比较两最小值的大小即可 .

试题解析:(1)当

(2)当

取得最大值

取得最大值

综上所述,当取得最大值1000,

即年产量为100千件时,该厂在这一商品的生产中所获利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右焦点分别为,且经过点

I)求椭圆C的方程:

II)直线y=kx(kR,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒中装有编号分别为1,2,3,4的四个形状大小完全相同的小球.

(1)从盒中任取两球,求取出的球的编号之和大于5的概率.

(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)求当时, 的值域;

(2)若函数内有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三共有2000名学生参加广安市联考,现随机抽取100名学生的成绩(单位:分),并列成如下表所示的频数分布表:

组别

频数

6

18

28

26

17

5

(1)试估计该年级成绩分的学生人数;

(2)已知样本中成绩在中的6名学生中,有4名男生,2名女生,现从中选2人进行调研,求恰好选中一名男生一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:

(1)取出1球是红球或黑球的概率;

(2)取出1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

(1) 算出线性回归方程; (a,b精确到十分位)

(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.

(参考公式:)

查看答案和解析>>

同步练习册答案