【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
【答案】(1)取出球为红球或黑球的概率为 (2)取出球为红球或黑球或白球的概率为
【解析】
试题分析:思路一 (利用互斥事件求概率)记事件={任取球为红球},={任取球为黑球},
={任取球为白球},={任取球为绿球},根据题意知,事件彼此互斥,
由互斥事件的概率公式即得
思路二 (利用对立事件求概率)(1)由的对立事件为计算即得;
(2)由的对立事件为,计算即得.
试题解析: 方法一 (利用互斥事件求概率)
记事件={任取球为红球},={任取球为黑球},
={任取球为白球},={任取球为绿球},
则
根据题意知,事件彼此互斥,
由互斥事件的概率公式,得
(1)取出球为红球或黑球的概率为
(2)取出球为红球或黑球或白球的概率为
方法二 (利用对立事件求概率)
(1)由方法一知,取出球为红球或黑球的对立事件为取出球为白球或绿球,即的对立事件为,所以取出球为红球或黑球的概率为
(2)因为的对立事件为,
所以取出球为红球或黑球或白球的概率为
.
科目:高中数学 来源: 题型:
【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;
(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.
(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若四面体的三组对棱分别相等,即
给出下列结论:
①四面体每个面的面积相等;
②从四面体每个顶点出发的三条棱两两夹角之和大于 而小于 ;
③连结四面体每组对棱中点的线段相互垂直平分;
④从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长;
其中正确结论的序号是__________。(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线:与双曲线:(,)有公共焦点,点是曲线,在在第一象限的交点,且.
(1)求双曲线的方程;
(2)以为圆心的圆与双曲线的一条渐进线相切,圆.已知点,过点作互相垂直分别与圆、圆相交的直线和,设被圆解得的弦长为,被圆截得的弦长为.试探索是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四边形BB1C1C为正方形,设AB1的中点为D,B1C∩BC1=E.
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩。
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据其回归线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,三个内角A,B,C所对的边分别为a,b,c,且acsin C=(a2+c2-b2)·sin B.
(1)若C=,求A的大小;
(2)若a≠b,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个水轮的半径为4m,水轮圆心O距离水面2m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点p0)开始计算时间.
(1)将点p距离水面的高度z(m)表示为时间t(s)的函数;
(2)点p第一次到达最高点大约需要多少时间?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com