精英家教网 > 高中数学 > 题目详情

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的星级卖场”.

(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;

(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;

(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.

(只需写出结论)

【答案】1523达到最小值

【解析】试题分析:(1)由茎叶图和平均数的定义可得,即可得到符合星际卖场的个数

记事件,由题意和平均数可得,列举可得的取值共9种情况,其中满足的共4种情况,由概率公式即可得到所求答案。

根据方差公式,只需时,达到最小值

试题解析:(1)解:根据茎叶图,

得甲组数据的平均数为

由茎叶图,知甲型号电视机的星级卖场的个数为

2)解:记事件A, 因为乙组数据的平均数为267

所以

解得

所以取值共有9种情况,它们是:,其中4种情况,它们是:, 所以的概率

3)解:当时,达到最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为:为常数).

(Ⅰ)判断曲线的形状;

(Ⅱ)设直线与曲线交于不同的两点,且,求曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,EFGH分别是ABBCCDDA上的点,且满足

(1)求证:四边形EFGH是梯形;

(2)若BDa,求梯形EFGH的中位线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右焦点分别为,且经过点

I)求椭圆C的方程:

II)直线y=kx(kR,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(4,-3)B(2,-1)和直线l4x3y20

1求在直角坐标平面内满足|PA||PB|的点P的方程;

2求在直角坐标平面内一点P满足|PA||PB|且点P到直线l的距离为2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在平行四边形中, , 分别为的中点.现把平行四边形沿折起,如图(2)所示,连结.

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的最小值为,求的值;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒中装有编号分别为1,2,3,4的四个形状大小完全相同的小球.

(1)从盒中任取两球,求取出的球的编号之和大于5的概率.

(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:

(1)取出1球是红球或黑球的概率;

(2)取出1球是红球或黑球或白球的概率.

查看答案和解析>>

同步练习册答案