精英家教网 > 高中数学 > 题目详情

【题目】已知A(4,-3)B(2,-1)和直线l4x3y20

1求在直角坐标平面内满足|PA||PB|的点P的方程;

2求在直角坐标平面内一点P满足|PA||PB|且点P到直线l的距离为2的坐标.

【答案】(1) (2)

【解析】试题分析:(1)由题意可知|PA|=|PB|即点P为线段AB的中垂线,所过点P的轨迹为过AB中点,斜率满足。(2)由(1)可知点P的方程x-y-5=0,

设点P的坐标为(a,b),再由点到直线的距离公式和点在直线x-y-5=0,列方程组可解。

试题解析:(1)∵A(4,-3),B(2,-1),

∴线段AB的中点M的坐标为(3,-2),又

∴线段AB的垂直平分线方程为y+2=x-3,

即点P的方程x-y-5=0.

(2)设点P的坐标为(a,b),

∵点P(a,b)在上述直线上,∴a-b-5=0.①

又点P(a,b)到直线l:4x+3y-2=0的距离为2,

=2,即4a+3b-2=±10,②

联立①②可得

∴所求点P的坐标为(1,-4)或.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位每天的用电量当天最高气温之间具有线性相关关系,下表是该单位随机统计4天的用电量与当天最高气温的数据.

最高气温()

26

29

31

34

用电量 (度)

22

26

34

38

根据表中数据求出回归直线的方程(其中);

预测某天最高气温为33,该单位当天的用电量(精确到1度).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆因夏长酷热多伏旱而得名火炉,八月是重庆最热、用电量最高的月份.下图是沙坪坝区居民八月份用电量(单位:度)的频率分布直方图,其分组区间依次为:

(1)求直方图中的

(2)根据直方图估计八月份用电量的众数和中位数;

(3)在用电量为的四组用户中用分层抽样的方法抽取11户居民,则用电量在的用户应抽取多少户

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABC﹣A1B1C1是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).

(Ⅰ)证明:PQ∥A1B1

(Ⅱ)当时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四面体CABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的星级卖场”.

(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;

(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;

(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.

(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据)如下表所示:

试销价格

(元)

4

5

6

7

9

产品销量

(件)

84

83

80

75

68

已知变量具有线性负相关关系,且,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲,乙,丙,其中有且仅有一位同学的计算结果是正确的( ).

1)试判断谁的计算结果正确?并求出的值;

2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是理想数据,现从检测数据中随机抽取2个,理想数据的个数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I求此圆的方程

II若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线与双曲线有公共焦点是曲线在在第一象限的交点

1求双曲线的方程

2为圆心的圆与双曲线的一条渐进线相切.已知点,过点作互相垂直分别与圆相交的直线被圆解得的弦长为被圆截得的弦长为.试探索是否为定值请说明理由

查看答案和解析>>

同步练习册答案