£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ
x=acos¦Õ
y=bsin¦Õ
(¦Õ
Ϊ²ÎÊý£¬a£¾b£¾0£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlÓëÔ²OµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin(¦È+
¦Ð
4
)=
2
2
m(m
Ϊ·ÇÁã³£Êý£©Óë¦Ñ=b£®ÈôÖ±Ïßl¾­¹ýÍÖÔ²CµÄ½¹µã£¬ÇÒÓëÔ²OÏàÇУ¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ______£®
Ö±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin(¦È+
¦Ð
4
)=
2
2
m(m
Ϊ·ÇÁã³£Êý£©»¯³ÉÖ±½Ç×ø±ê·½³ÌΪx+y-m=0£¬
ËüÓëxÖáµÄ½»µã×ø±êΪ£¨m£¬0£©£¬ÓÉÌâÒâÖª£¬£¨m£¬0£©ÎªÍÖÔ²µÄ½¹µã£¬¹Ê|m|=c£¬
ÓÖÖ±ÏßlÓëÔ²O£º¦Ñ=bÏàÇУ¬¡à
|-m|
2
=b
£¬
´Ó¶øc=
2
b£¬ÓÖb2=a2-c2£¬
¡àc2=2£¨a2-c2£©£¬
¡à3c2=2a2£¬¡à
c
a
=
6
3
£®
ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ
6
3
£®
¹Ê´ð°¸Îª£º
6
3
£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾Ì⣨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡´ðÌ⣬ÿСÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄǰÁ½Ìâ¼Æ·Ö£®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
33
cd
£¬Èô¾ØÕóAÊôÓÚÌØÕ÷Öµ6µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª
¦Á
=
1
1
£¬ÊôÓÚÌØÕ÷Öµ1µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª
¦Â
=
&-2
£»
£¨¢ñ£©Çó¾ØÕóA£»
£¨¢ò£©ÅжϾØÕóAÊÇ·ñ¿ÉÄæ£¬Èô¿ÉÄæÇó³öÆäÄæ¾ØÕóA-1£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±Ïߵļ«×ø±ê·½³ÌΪ¦Ñsin(¦È+
¦Ð
4
)=
2
2
£¬Ô²MµÄ²ÎÊý·½³ÌΪ
x=2cos¦È
y=-2+2sin¦È
£¨ÆäÖЦÈΪ²ÎÊý£©£®
£¨¢ñ£©½«Ö±Ïߵļ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóÔ²MÉϵĵ㵽ֱÏߵľàÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£¬É躯Êýf£¨x£©=|x-1|+|x-a|£»
£¨¢ñ£©Èôa=-1£¬½â²»µÈʽf£¨x£©¡Ý3£»
£¨¢ò£©Èç¹û¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ü2Óн⣬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡÷ABCµÄÍâ½ÓÔ²µÄÇÐÏßAEÓëBCµÄÑÓ³¤ÏßÏཻÓÚµãE£¬¡ÏBACµÄƽ·ÖÏßÓëBC
½»ÓÚµãD£®ÇóÖ¤£ºED2=EB•EC£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Çó¾ØÕóM=
-14
26
µÄÌØÕ÷ÖµºÍÌØÕ÷ÏòÁ¿£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÒÔOΪ¼«µãµÄ¼«×ø±êϵÖУ¬Ö±ÏßlÓëÇúÏßCµÄ¼«×ø±ê·½³Ì·Ö±ðÊǦÑcos(¦È+
¦Ð
4
)=
3
2
2
ºÍ¦Ñsin2¦È=4cos¦È£¬Ö±ÏßlÓëÇúÏßC½»Óڵ㣮A£¬B£¬C£¬ÇóÏß¶ÎABµÄ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
¶ÔÓÚʵÊýx£¬y£¬Èô|x-1|¡Ü1£¬|y-2|¡Ü1£¬Çó|x-y+1|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-4£»×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßLµÄ²ÎÊý·½³ÌΪ
x=3-
2
2
t
y=
2
2
t
£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2
5
sin¦È
£®
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÔ²CÓëÖ±ÏßL½»ÓÚµãA£¬B£¬ÈôµãPµÄ×ø±êΪ£¨3£¬
5
£©£¬Çó|PA|+|PB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ðí²ýÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=a+4t
y=-1-2t
£¨tΪ²ÎÊý£©ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬¼«ÖáÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£©ÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2
2
cos£¨¦È+
¦Ð
4
£©£®
£¨¢ñ£©ÇóÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀ룻
£¨¢ò£©ÈôÖ±Ïßl±»Ô²C½ØµÃµÄÏÒ³¤Îª
6
5
5
£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ã¶«Ä£Ä⣩£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³ÌÑ¡½²£©
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣬÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬½¨Á¢¼«×ø±êϵ£®ÉèÇúÏßC²ÎÊý·½³ÌΪ
x=
3
cos¦È
y= sin¦È
£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos(¦È-
¦Ð
4
)=2
2
£®ÔòÇúÏßCÉϵĵ㵽ֱÏßlµÄ×î´ó¾àÀëÊÇ
3
2
3
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸