精英家教网 > 高中数学 > 题目详情
1.若x0是函数f(x)=2${\;}^{x}-\frac{1}{x}$的一个零点,x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)>0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)<0,f(x2)>0

分析 因为x0是函数f(x)的一个零点 可得到f(x0)=0,再由函数f(x)的单调性可得到答案.

解答 解:∵x0是函数f(x)=2x-$\frac{1}{x}$的一个零点,
∴f(x0)=0,
又∵f′(x)=2xln2+$\frac{1}{{x}^{2}}$>0,
∴f(x)=2x-$\frac{1}{x}$是单调递增函数,且x1∈(0,x0),x2∈(x0,+∞),
∴f(x1)<f(x0)=0<f(x2).
故选:D.

点评 本题考查了函数零点的概念和函数单调性的问题,属中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:①图象关于点(1,0)对称;②f(x)关于x=-1对称;③当∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]内的零点个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在空间四边形ABCD中,E,F分别是AB,BC的中点.求证:EF和AD为异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过抛物线y2=10x的焦点的一条直线交抛物线于A、B两点,若线段AB的中点的横坐标是3,则|AB|=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{a-lnx}{x}$在点(1,f(1))处的切线与x轴平行.
(1)求实数a的值及f(x)的极值;
(2)若对任意x1,x2∈[e2,+∞),有|$\frac{{f({x_1})-f({x_2})}}{{x_1^{\;}-x_2^{\;}}}$|>$\frac{k}{{x_1^{\;}•x_2^{\;}}}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且关于x的不等式2f(x)≥a-g(x)对?x∈R恒成立.
(1)求实数a的最大值m;
(2)若正实数a,b,c满足a+2b+3c=2m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知两圆x2+y2=1和(x-1)2+(y-1)2=1.求:
(1)两圆的公共弦所在直线的方程;
(2)公共弦所在直线被圆C:x2+y2-2x-2y-$\frac{17}{4}$=0所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.“无字证明”(proofs without words),就是将数学命题用简单、有创意而且易于理解的几何图形来呈现.请利用图甲、图乙、图丙的面积关系,写出该图所验证的一个三角恒等变换公式:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,若输入n的值为10,则输出S的值是(  )
A.45B.46C.55D.56

查看答案和解析>>

同步练习册答案