精英家教网 > 高中数学 > 题目详情
1.已知定义在R上的函数f(x)满足:①图象关于点(1,0)对称;②f(x)关于x=-1对称;③当∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]内的零点个数为(  )
A.3B.4C.5D.6

分析 由①可得f(x)+f(2-x)=0,求得x在[1,3]上的f(x)的解析式;再由②求得x在[-3,-1]上的解析式,画出f(x)和y═($\frac{1}{2}$)|x|在[-3,3]的图象,通过图象观察,可得它们有5个交点,即可得到零点的个数.

解答 解:由题意可得f(x)+f(2-x)=0,
当1≤x≤2时,0≤2-x≤1,f(2-x)=cos$\frac{π}{2}$(2-x)=-cos$\frac{π}{2}$x,
则f(x)=-f(2-x)=cos$\frac{π}{2}$x;
当2<x≤3时,-1≤x<0,f(2-x)=1-(2-x)2
则f(x)=-f(2-x)=(2-x)2-1.
由②f(-1+x)=f(-1-x),即为f(x)=f(-x-2),
当-3≤x≤-2时,0≤-2-x≤1,f(-2-x)=cos$\frac{π}{2}$(-2-x)=-cos$\frac{π}{2}$x,
则f(x)=-f(-2-x)=-cos$\frac{π}{2}$x;
当-2<x≤-1时,-1≤-2-x<0,f(-2-x)=1-(-2-x)2
则f(x)=f(-2-x)=1-(-2-x)2
y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点
即为y=f(x)和y=($\frac{1}{2}$)|x|在[-3,3]的交点个数.
作出y=f(x)和y═($\frac{1}{2}$)|x|在[-3,3]的图象,
通过图象观察,可得它们有5个交点,
即有5个零点.
故选:C.

点评 本题考查函数的性质和运用,考查函数方程的转化思想,注意运用数形结合的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图,透明塑料制成的长方体ABCD-A′B′C′D内灌进一些水,固定容器底面一边BC与地面上,再将容器倾斜.随着倾斜度的不同,有下面四个命题:
①有水的部分始终呈棱柱形,没水的部分也始终呈棱柱形;
②棱A′D′始终与水面所在平面平行;
③水面EFGH所在四边形的面积为定值;
④当容器倾斜如图3所示时,BE•BF是定值.
其中正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求a的取值范围;
(3)若存在x0,使得x0既是函数f(x)的零点,又是函数f(x)的极值点,请写出此时a的值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,O为同一平面上任一点,试用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DC}$,$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{BC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{AN}$,则λ+μ=(  )
A.$\frac{1}{5}$B.$\frac{4}{5}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生产1万件产品还需投入18万元,又知年销量W(万件)与广告费x(万元)之间的函数关系为W=$\frac{kx+1}{x+1}$(x≥0),且知投入广告费1万元时,可多销售2万件产品,预计此种产品年销售收入M(万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用50%的和.
(1)试将年利润y(万元)表示为年广告费x(万元)的函数;
(2)当年广告费为多少万元时,年利润最大?最大年利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(x+y+3)5展开式中不含y的各项系数之和为(  )
A.25B.35C.45D.(x+3)5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b为实数,如果矩阵A=$[\begin{array}{l}{a}&{1}\\{0}&{b}\end{array}]$所对应的变换T把直线x-y=1变换为自身,试求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x0是函数f(x)=2${\;}^{x}-\frac{1}{x}$的一个零点,x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)>0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)<0,f(x2)>0

查看答案和解析>>

同步练习册答案