精英家教网 > 高中数学 > 题目详情
9.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,O为同一平面上任一点,试用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$.

分析 根据平面向量的线性表示与运算,即可用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示出$\overrightarrow{OP}$.

解答 解:∵$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,
∴$\overrightarrow{OP}$-$\overrightarrow{OA}$=λ($\overrightarrow{OB}$-$\overrightarrow{OA}$),
∴$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\overrightarrow{OB}$-$\overrightarrow{OA}$)
=(1-λ)$\overrightarrow{OA}$+λ$\overrightarrow{OB}$.

点评 本题考查了平面向量的线性表示与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设点P为圆C1:x2+y2=2上的动点,过点P作x轴的垂线,垂足为Q,点M满足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求点M的轨迹C2的方程;
(2)过直线x=2上的点T作圆C1的两条切线,设切点分别为A、B,若直线AB与(1)中的曲线C2交与C、D两点,求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{3}$,以原点O为圆心,b为半径的圆与直线x-y+2=0相切,A、B分别是椭圆的左、右顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P与A,B均不重合,直线PA,PB的斜率分别为k1,k2,求k1•k2的值;
(Ⅲ)设M为过P且垂直于x轴的直线上的点,若$\frac{|OP|}{|OM|}$=λ($\frac{\sqrt{3}}{3}$≤λ<1),求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设圆O:x2+y2=$\frac{16}{9}$,直线l:x+3y-8=0,点A∈l,圆O上存在点B且∠OAB=30°(O为坐标原点),则点A的纵坐标的取值范围[$\frac{32}{15},\frac{8}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知圆心为C的圆满足下列条件:圆心C位于y轴的正半轴上,圆C与x轴交于A,B两点(A在左边,B在右边),且|AB|=4,点B到直线AC的距离为$\frac{{4\sqrt{5}}}{5}$.
(1)求圆C的标准方程;
(2)若直线y=kx-1(k∈R)与圆C交于M、N两点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,平行四边形ABCD,点E、F分别是DC,BC的中点,$\overrightarrow{AC}$=$λ\overrightarrow{AE}$-$μ\overrightarrow{AF}$,则λ+μ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:①图象关于点(1,0)对称;②f(x)关于x=-1对称;③当∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]内的零点个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定积分${∫}_{-1}^{2}$|x2-1|dx=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过抛物线y2=10x的焦点的一条直线交抛物线于A、B两点,若线段AB的中点的横坐标是3,则|AB|=11.

查看答案和解析>>

同步练习册答案