精英家教网 > 高中数学 > 题目详情
4.如图,已知圆心为C的圆满足下列条件:圆心C位于y轴的正半轴上,圆C与x轴交于A,B两点(A在左边,B在右边),且|AB|=4,点B到直线AC的距离为$\frac{{4\sqrt{5}}}{5}$.
(1)求圆C的标准方程;
(2)若直线y=kx-1(k∈R)与圆C交于M、N两点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2(O为坐标原点),求k的值.

分析 (1)设圆C为x2+(y-a)2=r2(a>0,r>0),依题意设A(-2,0),B(2,0),求出直线AC的方程,由点B到直线AC的距离为$\frac{{4\sqrt{5}}}{5}$求得a值,进一步求得半径,则圆C的标准方程可求;
(2)设M(x1,y1),N(x2,y2),联立直线与圆的方程,利用根与系数的关系求得M,N的横纵坐标的乘积,代入$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,即可求得k值.

解答 解:(1)设圆C为x2+(y-a)2=r2(a>0,r>0),圆心C(0,a),
依题意设A(-2,0),B(2,0),则直线AC的方程为ax-2y+2a=0.
由点B到直线AC的距离为$\frac{{4\sqrt{5}}}{5}$,得$\frac{|2a+2a|}{\sqrt{{a}^{2}+4}}=\frac{4\sqrt{5}}{5}$,解得a=±1,
∵a>0,∴a=1.
则r=|AC|=$\sqrt{5}$,
∴圆C的标准方程为x2+(y-1)2=5;
(2)设M(x1,y1),N(x2,y2),直线y=kx-1与圆C交于M、N两点,
联立$\left\{\begin{array}{l}{y=kx-1}\\{{x}^{2}+(y-1)^{2}=5}\end{array}\right.$,得(1+k2)x2-4kx-1=0.
△=(-4k)2+4(1+k2)=4(5k2+1)>0恒成立,
${x}_{1}+{x}_{2}=\frac{4k}{1+{k}^{2}},{x}_{1}{x}_{2}=\frac{-1}{1+{k}^{2}}$,
则y1y2=(kx1-1)(kx2-1)=k2x1x2-k(x1+x2)+1=$\frac{-4{k}^{2}+1}{1+{k}^{2}}$,
∵$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,
∴${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=\frac{-1}{1+{k}^{2}}+\frac{-4{k}^{2}+1}{1+{k}^{2}}=-2$,解得k=±1.

点评 本题考查圆的标准方程,直线与圆的位置关系等知识,考查运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.方程x2-2x+p=0的解集为A,方程x3+qx2+rx=0(r≠0)的解为A∪B={0,-1,3},A∩B={3},则r=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足方程x2+(y-1)2=1,不等式x+y+c≥0恒成立,则实数c的取值范围是[$\sqrt{2}$-1,+∞);
若x,y满足方程x2+(y-1)2=1,x+y+c=0,则实数c的取值范围是[$-1-\sqrt{2},\sqrt{2}-1$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求a的取值范围;
(3)若存在x0,使得x0既是函数f(x)的零点,又是函数f(x)的极值点,请写出此时a的值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆M(x+2)2+(y+2)2=r2(r>0)过点T(-3,-3),圆M关于直线x+y+2=0对称的圆为圆C,设P点为T点关于x+y+2=0的对称点.
(1)求圆C方程;
(2)设Q为圆C上的一个动点,求$\overrightarrow{PQ•}\overrightarrow{MQ}$的最小值;
(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB分别与x轴的交点分别为E,F,若△PEF是以P为顶点的等腰三角形,O为坐标原点,试判断直线OP和AB是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,O为同一平面上任一点,试用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DC}$,$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{BC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{AN}$,则λ+μ=(  )
A.$\frac{1}{5}$B.$\frac{4}{5}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(x+y+3)5展开式中不含y的各项系数之和为(  )
A.25B.35C.45D.(x+3)5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-mx(m∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)当m≥$\frac{3\sqrt{2}}{2}$时,设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx-cx2-bx的零点,求y=(x1-x2)h′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

同步练习册答案