精英家教网 > 高中数学 > 题目详情
16.在梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DC}$,$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{BC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{AN}$,则λ+μ=(  )
A.$\frac{1}{5}$B.$\frac{4}{5}$C.$\frac{4}{7}$D.$\frac{6}{7}$

分析 由已知可得$\overrightarrow{AM}$=$\overrightarrow{AC}$-$\overrightarrow{MC}$=$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\overrightarrow{AB}$+$\overrightarrow{BN}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$,两式相减后整理可得答案.

解答 解:∵梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DC}$,$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{BC}$,
∴M、N分别为CD、BC的三等分点,

∴$\overrightarrow{MC}$=$\frac{1}{3}$$\overrightarrow{AB}$,
∴$\overrightarrow{AM}$=$\overrightarrow{AC}$-$\overrightarrow{MC}$=$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$,
$\overrightarrow{AN}$=$\overrightarrow{AB}$+$\overrightarrow{BN}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$,
3$\overrightarrow{AN}$-$\overrightarrow{AM}$=3$\overrightarrow{AB}$+$\overrightarrow{BC}$-$\overrightarrow{AC}$+$\frac{1}{3}$$\overrightarrow{AB}$=$\frac{7}{3}$$\overrightarrow{AB}$,
∴$\overrightarrow{AB}$=$\frac{9}{7}$$\overrightarrow{AN}$-$\frac{3}{7}$$\overrightarrow{AM}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{AN}$,
∴λ+μ=$\frac{6}{7}$.
故选:D.

点评 本题考查了向量的三角形法则、向量的线性运算、共面向量基本定理、梯形的性质,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设双曲线M的方程为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1.
(1)求M的实轴长、虚轴长及焦距;
(2)若抛物线N:y2=2px(p>0)的焦点为双曲线M的右顶点,且直线x=m(m>0)与抛物线N交于A、B两点,若OA⊥OB(O为坐标原点),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2mx3-3nx2+10(m,n>0)有两个不同零点,则5lg2m+9lg2n的最小值是(  )
A.6B.$\frac{13}{9}$C.1D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知圆心为C的圆满足下列条件:圆心C位于y轴的正半轴上,圆C与x轴交于A,B两点(A在左边,B在右边),且|AB|=4,点B到直线AC的距离为$\frac{{4\sqrt{5}}}{5}$.
(1)求圆C的标准方程;
(2)若直线y=kx-1(k∈R)与圆C交于M、N两点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在[-$\frac{π}{2}$,$\frac{π}{2}$]的函数f(x)=sinx(cosx+1)-ax,若该函数仅有一个零点,则实数a的取值范围是(  )
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[0,$\frac{2}{π}$)D.(-∞,0)∪[$\frac{2}{π}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:①图象关于点(1,0)对称;②f(x)关于x=-1对称;③当∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]内的零点个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN四个面中面积最大的是(  )
A.△MNQB.△BMNC.△BMQD.△BNQ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于实数a、b,定义运算“?”:a?b=$\left\{\begin{array}{l}{b-a,a<b}\\{{b}^{2}-{a}^{2},a≥b}\end{array}\right.$,设f(x)=(2x-3)?(x-3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为(  )
A.(0,3)B.(-1,0)C.(-∞,0)D.(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{a-lnx}{x}$在点(1,f(1))处的切线与x轴平行.
(1)求实数a的值及f(x)的极值;
(2)若对任意x1,x2∈[e2,+∞),有|$\frac{{f({x_1})-f({x_2})}}{{x_1^{\;}-x_2^{\;}}}$|>$\frac{k}{{x_1^{\;}•x_2^{\;}}}$,求实数k的取值范围.

查看答案和解析>>

同步练习册答案