精英家教网 > 高中数学 > 题目详情
6.设双曲线M的方程为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1.
(1)求M的实轴长、虚轴长及焦距;
(2)若抛物线N:y2=2px(p>0)的焦点为双曲线M的右顶点,且直线x=m(m>0)与抛物线N交于A、B两点,若OA⊥OB(O为坐标原点),求m的值.

分析 (1)直接利用双曲线的方程求解实轴长、虚轴长及焦距.
(2)求出双曲线M的右顶点,得到p,然后求出A的坐标,利用OA⊥OB,考查方程求解即可.

解答 解:(1)双曲线M的方程为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1.
可得a=3,b=$\sqrt{5}$,c=2
所以双曲线M的实轴长为:6、
虚轴长:2$\sqrt{5}$
焦距:4;
(2)双曲线M的右顶点(3,0),抛物线N:y2=2px(p>0)的焦点为双曲线M的右顶点,
所以p=6,抛物线方程为:y2=12x,
直线x=m(m>0)与抛物线N交于A、B两点,若OA⊥OB(O为坐标原点),
可得A(m,m),B(m,-m),所以m2=12m,
解得m=6.

点评 本题考查直线与圆锥曲线的位置关系的应用,抛物线的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知定点D(1,0),M是圆C:(x+1)2+y2=16上任意一点,线段MD的中垂线与半径MC交于点P,设动点P的轨迹为曲线R.
(1)求曲线R的方程;
(2)若直线l与圆O:x2+y2=1相切,与曲线R相交于A,B两点,求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=($\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{CA}$=(cosα,sinα)(α∈R),则$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的取值范围是(  )
A.[0,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{5π}{12}$]C.[$\frac{π}{12}$,$\frac{5π}{12}$]D.[$\frac{π}{6}$,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程x2-2x+p=0的解集为A,方程x3+qx2+rx=0(r≠0)的解为A∪B={0,-1,3},A∩B={3},则r=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若三阶行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array}|$=M,则$|\begin{array}{l}{-3{a}_{11}}&{-3{a}_{12}}&{-3{a}_{13}}\\{-3{a}_{21}}&{-3{a}_{22}}&{-3{a}_{23}}\\{-3{a}_{31}}&{-3{a}_{32}}&{-3{a}_{33}}\end{array}|$=(  )
A.-9MB.9MC.27MD.-27M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,透明塑料制成的长方体ABCD-A′B′C′D内灌进一些水,固定容器底面一边BC与地面上,再将容器倾斜.随着倾斜度的不同,有下面四个命题:
①有水的部分始终呈棱柱形,没水的部分也始终呈棱柱形;
②棱A′D′始终与水面所在平面平行;
③水面EFGH所在四边形的面积为定值;
④当容器倾斜如图3所示时,BE•BF是定值.
其中正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,过椭圆C上一点P(2,1)作x轴的垂线,垂足为Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q的直线l交椭圆C于点A,B,且3$\overrightarrow{QA}$+$\overrightarrow{QB}$=$\overrightarrow{0}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足方程x2+(y-1)2=1,不等式x+y+c≥0恒成立,则实数c的取值范围是[$\sqrt{2}$-1,+∞);
若x,y满足方程x2+(y-1)2=1,x+y+c=0,则实数c的取值范围是[$-1-\sqrt{2},\sqrt{2}-1$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在梯形ABCD中,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DC}$,$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{BC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{AN}$,则λ+μ=(  )
A.$\frac{1}{5}$B.$\frac{4}{5}$C.$\frac{4}{7}$D.$\frac{6}{7}$

查看答案和解析>>

同步练习册答案