精英家教网 > 高中数学 > 题目详情
18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,过椭圆C上一点P(2,1)作x轴的垂线,垂足为Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q的直线l交椭圆C于点A,B,且3$\overrightarrow{QA}$+$\overrightarrow{QB}$=$\overrightarrow{0}$,求直线l的方程.

分析 (Ⅰ)设椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意得$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{4}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1,a2=b2+c2.解出即可得出;
(Ⅱ)由题意得点Q(2,0),设直线方程为x=ty+2(t≠0),A(x1,y1),B(x2,y2),将直线x=ty+2(t≠0),代入椭圆方程得到(2+t2)y2+4ty-2=0,利用向量的坐标运算性质、一元二次方程的根与系数的关系即可得出.

解答 解:(Ⅰ)设椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意得$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{4}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1,a2=b2+c2
解得a2=6,b2=c2=3,则椭圆C:$\frac{{x}^{2}}{6}$=$\frac{{y}^{2}}{3}$=1.
(Ⅱ)由题意得点Q(2,0),
设直线方程为x=ty+2(t≠0),A(x1,y1),B(x2,y2),
则$\overrightarrow{QA}$=(x1-2,y1),$\overrightarrow{QB}$=(x2-2,y2),
由3$\overrightarrow{QA}$+$\overrightarrow{QB}$=$\overrightarrow{0}$,得3y1+y2=0,
 y1+y2=-2y1,y1y2=-3${y}_{1}^{2}$,得到$\frac{({y}_{1}+{y}_{2})^{2}}{{y}_{1}{y}_{2}}$=-$\frac{4}{3}$(*)
将直线x=ty+2(t≠0),代入椭圆方程得到(2+t2)y2+4ty-2=0,
∴y1+y2=$\frac{-4t}{2+{t}^{2}}$,y1y2=$\frac{-2}{2+{t}^{2}}$,代入(*)式,解得:t2=$\frac{2}{5}$,
∴直线l的方程为:y=±$\frac{\sqrt{10}}{2}$(x-2).

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为一元二次方程的根与系数的关系、向量的坐标运算性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知S-ABCD为正四棱锥,AB=2,SA=3,求棱锥的高和棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点(2,3)的直线l与圆 C:x2+y2+4x+3=0交于A,B两点,当弦|AB|取最大值时,直线l的方程为(  )
A.3x-4y+6=0B.3x-4y-6=0C.4x-3y+8=0D.4x+3y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设双曲线M的方程为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1.
(1)求M的实轴长、虚轴长及焦距;
(2)若抛物线N:y2=2px(p>0)的焦点为双曲线M的右顶点,且直线x=m(m>0)与抛物线N交于A、B两点,若OA⊥OB(O为坐标原点),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:A,B,C是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的顶点,点F(c,0)为椭圆的右焦点,离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆过点$({2\sqrt{3},1})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:$2{k_1}=k+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-8x-4y+4=0及直线l:(2m+1)x+(m-1)y=7m-1(m∈R).
(1)证明:不论m取什么实数,直线l与圆C一定相交;
(2)求直线l与圆C所截得的弦长的最短长度及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知过点P(1,1)的直线l1,l2的斜率分别为k1,k2,圆O以原点为圆心,2为半径,直线l1交圆O于点M,N,直线l2交圆O于点P、Q,若$\frac{|MN|}{|PQ|}$=$\frac{\sqrt{6}}{2}$,且k1+k2=0,则k1k2等于(  )
A.1B.-$\frac{1}{9}$C.-9D.-$\frac{1}{9}$或-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2mx3-3nx2+10(m,n>0)有两个不同零点,则5lg2m+9lg2n的最小值是(  )
A.6B.$\frac{13}{9}$C.1D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN四个面中面积最大的是(  )
A.△MNQB.△BMNC.△BMQD.△BNQ

查看答案和解析>>

同步练习册答案