分析 x+y+c大于等于0,即要-c小于等于x+y恒成立,即-c小于等于x+y的最小值,由x与y满足的关系式为圆心为(0,1),半径为1的圆,可设x=cosα,y=1+sinα,代入x+y,利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域可得出x+y的最小值,即可得到实数c的取值范围;同理求出x+y的最大值,即可得到满足x+y+c=0的实数c的取值范围.
解答 解:∵实数x,y满足x2+(y-1)2=1,
∴设x=cosα,y=1+sinα,
则x+y=cosα+1+sinα=$\sqrt{2}$sin(α+$\frac{π}{4}$)+1,
∵-1≤sin(α+$\frac{π}{4}$)≤1,
∴$\sqrt{2}$sin(α+$\frac{π}{4}$)+1的最小值为1-$\sqrt{2}$,
根据题意得:-c≤1-$\sqrt{2}$,即c≥$\sqrt{2}$-1,
则实数c的取值范围是[$\sqrt{2}$-1,+∞);
由-1≤sin(α+$\frac{π}{4}$)≤1,得$\sqrt{2}$sin(α+$\frac{π}{4}$)+1∈[1-$\sqrt{2}$,1+$\sqrt{2}$],
即-c∈[1-$\sqrt{2}$,1+$\sqrt{2}$],
则c∈[$-1-\sqrt{2},\sqrt{2}-1$].
故答案为:[$\sqrt{2}$-1,+∞);[$-1-\sqrt{2},\sqrt{2}-1$].
点评 本题考查了直线与圆的位置关系,涉及的知识有:圆的参数方程,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及不等式恒成立满足的条件,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -$\frac{1}{9}$ | C. | -9 | D. | -$\frac{1}{9}$或-9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | $\frac{13}{9}$ | C. | 1 | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | (-1,0) | C. | (-∞,0) | D. | (-3,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com