精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且关于x的不等式2f(x)≥a-g(x)对?x∈R恒成立.
(1)求实数a的最大值m;
(2)若正实数a,b,c满足a+2b+3c=2m,求a2+b2+c2的最小值.

分析 (1)由条件利用绝对值三角不等式求得实数a的最大值.
(2)由条件利用二维形式的柯西不等式,求得a2+b2+c2的最小值.

解答 解:(1)函数f(x)=|x+sin2θ|,g(x)=2|x-cos2θ|,θ∈[0,2π],且关于x的不等式2f(x)≥a-g(x)对?x∈R恒成立,
故 2|x+sin2θ|≥a-2|x-cos2θ|恒成立,即  2|x+sin2θ|+2|x-cos2θ|≥a 恒成立.
∵2|x+sin2θ|+2|x-cos2θ|≥|2x+2sin2θ-(2x-2cos2θ)|=2,∴2≥a,即a≤2,∴a的最大值为m=2.
(2)∵a+2b+3c=2m=4,∴16=(a+2b+3c)2≤(a2+b2+c2)•(12+22+32)=14•(a2+b2+c2),
∴a2+b2+c2 ≥$\frac{16}{14}$=$\frac{8}{7}$,即a2+b2+c2的最小值 为$\frac{8}{7}$.

点评 本题主要考查绝对值三角不等式、二维形式的柯西不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生产1万件产品还需投入18万元,又知年销量W(万件)与广告费x(万元)之间的函数关系为W=$\frac{kx+1}{x+1}$(x≥0),且知投入广告费1万元时,可多销售2万件产品,预计此种产品年销售收入M(万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用50%的和.
(1)试将年利润y(万元)表示为年广告费x(万元)的函数;
(2)当年广告费为多少万元时,年利润最大?最大年利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且满足a1=a(a≠3),an+1=Sn+3n,设bn=sn-3n,n∈N+
(1)求证:数列{bn}是等比数列;
(2)若an+1≥an,n∈N+,求实数a的最小值;
(3)若一个数列的前n项和为An,若An可以写出tp(t,p∈N+且t>1,p>1)的形式,则称An为“指数型和”.
当a=4时,给出一个新数列{en},其中en=$\left\{\begin{array}{l}{3,n=1}\\{{b}_{n},n≥2}\end{array}$,设这个新数列的前n项和为Cn.,问{Cn}中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正三棱锥P-ABC,E、F分别为PA、AB的中点,G在BC上,且$\frac{BG}{GC}$=2,过E、F、G三点作正三棱锥P-ABC的截面EFGH,则H的位置位于PC(  )
A.$\frac{PH}{HC}=\frac{1}{2}$B.PH=HCC.$\frac{PH}{HC}=2$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x0是函数f(x)=2${\;}^{x}-\frac{1}{x}$的一个零点,x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)>0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)<0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2(x-2)2-a|x-1|+a有4个零点,则a的取值范围为{-$\frac{32}{27}$}∪(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{mx}{lnx}$,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).
(1)求f(x)的解析式及单调递减区间;
(2)是否存在常数k,使得对于定义域内的任意x,f(x)>$\frac{k}{lnx}$+2$\sqrt{x}$恒成立,若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某资料室在计算机使用中,如表所示,编码以一定规则排列,且从左至右以及从上到下都是无限的,记第i行、第j列的编码为ai,j(i,j∈N*)求:
(Ⅰ)第2行第n列的编码a2,n
(Ⅱ)此表中,第m行第n列的编码am,n
111111
123456
1357911
147101316
159131721
1611162126

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.下列两个函数是否相同?为什么?
(1)f(x)=$\frac{x}{x}$与g(x)=1;
(2)f(x)=x与g(x)=$\sqrt{{x}^{2}}$;
(3)f(x)=$\frac{{x}^{4}-1}{{x}^{2}+1}$与g(x)=x2-1;
(4)y=sin2x+cos2x与y=1;
(5)f(x)=lgx2与g(x)=2lgx;
(6)f(x)=x$\root{3}{x-1}$与g(x)=$\root{3}{{x}^{4}-{x}^{3}}$.

查看答案和解析>>

同步练习册答案