精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x-2|+|x-a|(a∈R).
(1)当a=-1时,解不等式f(x)≥4.
(2)如果?x∈R,f(x)≥2,求a的取值范围.
分析:(1)当a=-1时,f(x)=|x-2|+|x+1|,由此利用零点分段讨论法能求出不等式f(x)≥4的解集.
(2)|x-2|+|x-a|表示的是在数轴上到2,a两点距离,距离最小值就是|a-2|,若f(x)≥2对x∈R恒成立,则只要满足|a-2|≥2,由此能求出实数a的取值范围.
解答:解:(1)当a=1时,f(x)=|x-2|+|x+1|,
由x-2=0,得x=2;由x+1=0得x=-1.
①当x≥2时,f(x)=x-2+x+1=2x-1≥4,解得x≥
5
2

②当-1≤x<2时,f(x)=2-x+x+1=3<4,不等式f(x)≥4不成立;
③当x<-1时,f(x)=2-x-1-x=1-2x≥4,解得x<-
3
2

综上所述不等式f(x)≥4的解集为{x|x≤-
3
2
或x≥
5
2
}.
(2)|x-2|+|x-a|表示的是在数轴上到2,a两点距离,距离最小值就是|a-2|,
若f(x)≥2对x∈R恒成立,
则只要满足|a-2|≥2,解得a≤0或a≥4.
∴实数a的取值范围是:a≤0或a≥4.
点评:本题考查不等式的解集的求法,考查带绝对值的函数,解题时要认真审题,注意零点分段讨论法和绝对值的含义的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案