精英家教网 > 高中数学 > 题目详情
15.锐角△ABC的内角A,B,C的对边分别别为a,b,c,且2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=2,求△ABC的周长取值范围?

分析 (Ⅰ)利用正弦定理结合两角和的正弦函数化简已知条件,然后求角C的值;
(Ⅱ)利用余弦定理以及基本不等式求出a+b的范围,然后求解即可.

解答 解:(Ⅰ)∵2cosC(acosB+bcosA)=c
由正弦定理得:2cosC(sinA•cosB+sinB•cosA)=sinC,
∴2cosC•sin(A+B)=sinC.
∵A+B+C=π,A、B、C∈(0,π),
∴sin(A+B)=sinC>0
∴2cosC=1,cosC=$\frac{1}{2}$;
∵C∈(0,π)
∴C=$\frac{π}{3}$.
(Ⅱ)由余弦定理得:c2=a2+b2-2ab•cosC=a2+b2-ab=(a+b)2-3ab
≥$(a+b)^{2}-3\frac{(a+b)^{2}}{4}=\frac{(a+b)^{2}}{4}$,
则a+b≤4.
又a+b>c=2,2<a+b≤4,4<a+b+c≤6.
∴△ABC的周长的取值范围为(4,6].

点评 本题考查余弦定理以及正弦定理,基本不等式的应用,考查转化思想以及计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设复数z的共轭复数为$\overline z$,$\overline z=\frac{2+4i}{z}+z$,则在复平面内复数z对应的点位于(  )
A.第三象限B.第二或第四象限C.第四象限D.第三或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$是两个单位向量,且(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)⊥(-2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$),则|$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$|=(  )
A.$\sqrt{6}$B.6C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知tanα=$\sqrt{3}$,π<α<$\frac{3}{2}$π,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的不等式x2-2ax-8a2<0的解集为(x1,x2),且x2-x1=15,则a=(  )
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.$±\frac{15}{4}$D.$±\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=1+cos(2x+\frac{3π}{2})-\sqrt{3}cos(π-2x)$.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)-m=2在$x∈[{0,\frac{π}{2}}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z=(3-2i)2+2i(i为虚数单位),则z虚部为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,若E为AB的中点,则A1E与CD1所成角的余弦值(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{3\sqrt{10}}}{10}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列结论正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

同步练习册答案