精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
和圆O:x2+y2=a2,F1(-1,0),F2(1,0)分别是椭圆的左、右两焦点,过F1且倾斜角为α(α∈(0,
π
2
])
的动直线l交椭圆C于A,B两点,交圆O于P,Q两点(如图所示,
点A在轴上方).当α=
π
4
时,弦PQ的长为
14

(1)求圆O和椭圆C的方程;
(2)若点M是椭圆C上一点,求当AF2,BF2,AB成等差数列时,△MPQ面积的最大值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)取PQ的中点D,连接OD,OP,求出OD,利用弦PQ的长为
14
,求出OQ,可得a,b,即可求圆O和椭圆C的方程;
(2)设|AF2|=s,|BF2|=t,利用AF2,BF2,AB成等差数列,求出t,设B(x0,y0),则由
(x0-1)2+y02=
64
9
x02
4
+
y02
3
=1
,得B的坐标,可得PQ的方程,求出PQ,椭圆C上一点到直线PQ的距离的最大值,即可求△MPQ面积的最大值.
解答: 解:(1)取PQ的中点D,连接OD,OP,
α=
π
4
,c=1,可得OD=
2
2

∵弦PQ的长为
14

OQ2=
PQ2
4
+OD2
=4,
∴a2=4,b2=3,
∴圆O的方程为x2+y2=4,椭圆C的方程为
x2
4
+
y2
3
=1

(2)设|AF2|=s,|BF2|=t,则
|AF1|+|AF2|=2a=4,|BF1|+|BF2|=2a=4,
∵AF2,BF2,AB成等差数列,
∴2t=s+8-s-t,
∴t=
8
3

设B(x0,y0),则由
(x0-1)2+y02=
64
9
x02
4
+
y02
3
=1
,得B(-
4
3
,-
15
3
),
∴k=
15

∴PQ:y=
15
(x+1)
∴O到PQ的距离为d=
15
4

∴PQ=2
4-
15
16
=
7
2

又∵椭圆C上一点到直线PQ的距离的最大值为
3
7
+
15
4

∴△MPQ面积的最大值
1
2
7
2
3
7
+
15
4
=
21
7
+7
15
16
点评:本题考查圆和椭圆的方程,考查三角形面积的计算,考查等差数列的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论正确的是
 
(写出所有正确结论的序号)
(1)常数列既是等差数列,又是等比数列;
(2)若直角三角形的三边a、b、c成等差数列,则a、b、c之比为3:4:5;
(3)若三角形ABC的三内角A、B、C成等差数列,则B=60°;
(4)若数列{an}的前n项和为Sn=n2+n+1,则{an}的通项公式an=2n+1;
(5)若数列{an}的前n项和为Sn=3n-1,则{an}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的真命题是(  )
A、若a>b>0,a>c,则a2>bc
B、若a>b>c,则
a
c
b
c
C、若a>b,n∈N*,则an>bn
D、若a>b>0,则1na<1nb

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线x-y+2=0与圆C:(x-3)2+(y-3)2=4相交于A、B两点,则
CA
CB
的值为(  )
A、-1B、0C、1D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-mx+m-1.
(1)若函数y=lgf(x)在[2,4]上有意义,求实数m的取值范围;
(2)若函数y=|f(x)|在[-1,0]上单调递减,求实数m的取值范围;
(3)若对于区间[2,
5
2
]
内任意两个相异实数x1,x2,总有|f(x1)-f(x2)|≤|x1-x2|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且cos2C+3cosC=1,c=
7
,又S△ABC=
3
3
2

(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,动点P(x,y)到F(0,1)的距离比到直线y=-2的距离小1.
(Ⅰ)求动点P的轨迹W的方程;
(Ⅱ)过点E(0,-4)的直线与轨迹W交于两点A,B,点D是点E关于x轴的对称点,点A关于y轴的对称点为A1,证明A1,D,B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,且经过点M(-
3
1
2
),圆C2
的直径C1的长轴.如图,C是椭圆短轴端点,动直线AB过点C且与圆C2交于A,B两点,CD垂直于AB交椭圆于点D.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)求△ABD面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(x+θ)(0<θ<
 π 
2
)的图象关于直线x=
 π 
6
对称,则θ=
 

查看答案和解析>>

同步练习册答案