科目:高中数学 来源: 题型:
若存在常数k和b (k、b∈R),使得函数
和
对其定义域上的任意实数x分别满足:
和
,则称直线l:
为
和
的“隔离直线”.已知
,
(其中e为自然对数的底数).(1)求
的极值;(2)函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于函数
和
,若存在常数
,对于任意
,不等式
都成立,则称直线
是函数
的分界线. 已知函数
为自然对数的底,
为常数).
(Ⅰ)讨论函数
的单调性;(Ⅱ)设
,试探究函数
与函数
是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com