精英家教网 > 高中数学 > 题目详情
11.下列命题中正确的是(  )
A.?x∈Z,x4≥1B.?x∈Q,x2=3C.?x∈R,x2-$\sqrt{2}$x-1>0D.?x∈N,|x|≤0

分析 根据特殊值法分别判断A、B、C、D的正误即可.

解答 解:对于A,比如x=0,不合题意;
对于B,x=±$\sqrt{3}$,B错误;
对于C,比如x=0时,-1<0,错误;
故选:D.

点评 本题考查了命题的正误的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆C;x2+y2+6x-2y+k=0,直线l:2x-y+2=0.
(1)求实数k的取值范围;
(2)若圆C与直线l交于A,B两点,且|AB|=2,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的单调递减区间为(-∞,0)和(0,+∞).
(1)求实数b的值;
(2)当x>0时,f2(x)≤x-2ex,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.巧克力很甜、很好吃,数学很妙、很有趣,某中学统计了部分同学“爱吃巧克力”与“数学成绩好”的关系,得到下表:
爱吃巧克力不爱吃巧克力合计
数学成绩好25540
数学成绩一般253560
合计5050100
经计算得k≈4.167,由此可以判断(  )
参考数据:
P(K2≥k)0.10.050.0250.01
k2.7063.8415.0246.635
A.至少有99%的把握认为“数学成绩好”与“爱吃巧克力”有关
B.至少有95%的把握认为“数学成绩好”与“爱吃巧克力”有关
C.至少有99%的把握认为“数学成绩好”与“爱吃巧克力”无关
D.至少有95%的把握认为“数学成绩好”与“爱吃巧克力”无关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知an=$\frac{n-\sqrt{2015}}{n-\sqrt{2016}}$(n∈N*),则数列{an}的前50项中最小项和最大项分别是(  )
A.a1,a50B.a1,a44C.a45,a50D.a44,a45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x3+3x2+a.
(1)求f(x)的单调区间;
(2)若f(x)在区间[1,3]上的最大值为10,求它在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知在△ABC中,a+b=$\sqrt{3}$,A=$\frac{π}{3}$,B=$\frac{π}{4}$,则a的值为3($\sqrt{3}$-$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知变换T将一个图形绕原点顺时针旋转60°,则该变换对应的矩阵是$[\begin{array}{l}{\frac{1}{2}}&{\frac{\sqrt{3}}{2}}\\{-\frac{\sqrt{3}}{2}}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆C与直线2x+y-5=0切于点(2,1),且与直线2x+y+15=0也相切,求圆C的方程.

查看答案和解析>>

同步练习册答案