19£®ÇÉ¿ËÁ¦ºÜÌ𡢺ܺóԣ¬ÊýѧºÜÃî¡¢ºÜÓÐȤ£¬Ä³ÖÐѧͳ¼ÆÁ˲¿·Öͬѧ¡°°®³ÔÇÉ¿ËÁ¦¡±Óë¡°Êýѧ³É¼¨ºÃ¡±µÄ¹ØÏµ£¬µÃµ½ÏÂ±í£º
°®³ÔÇÉ¿ËÁ¦²»°®³ÔÇÉ¿ËÁ¦ºÏ¼Æ
Êýѧ³É¼¨ºÃ25540
Êýѧ³É¼¨Ò»°ã253560
ºÏ¼Æ5050100
¾­¼ÆËãµÃk¡Ö4.167£¬ÓÉ´Ë¿ÉÒÔÅжϣ¨¡¡¡¡£©
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk£©0.10.050.0250.01
k2.7063.8415.0246.635
A£®ÖÁÉÙÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Êýѧ³É¼¨ºÃ¡±Óë¡°°®³ÔÇÉ¿ËÁ¦¡±ÓйØ
B£®ÖÁÉÙÓÐ95%µÄ°ÑÎÕÈÏΪ¡°Êýѧ³É¼¨ºÃ¡±Óë¡°°®³ÔÇÉ¿ËÁ¦¡±ÓйØ
C£®ÖÁÉÙÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Êýѧ³É¼¨ºÃ¡±Óë¡°°®³ÔÇÉ¿ËÁ¦¡±ÎÞ¹Ø
D£®ÖÁÉÙÓÐ95%µÄ°ÑÎÕÈÏΪ¡°Êýѧ³É¼¨ºÃ¡±Óë¡°°®³ÔÇÉ¿ËÁ¦¡±ÎÞ¹Ø

·ÖÎö °Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϣ®µÃµ½ÖÁÉÙÓÐ95%µÄ°ÑÎÕÈÏΪ¡°Êýѧ³É¼¨ºÃ¡±Óë¡°°®³ÔÇÉ¿ËÁ¦¡±ÓйØÏµ£®

½â´ð ½â£º¡ßK2=4.167£¾3.841£¬¶ÔÕÕ±í¸ñ£º

P£¨K2¡Ýk0£©0.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
¡àÖÁÉÙÓÐ95%µÄ°ÑÎÕÈÏΪ¡°Êýѧ³É¼¨ºÃ¡±Óë¡°°®³ÔÇÉ¿ËÁ¦¡±ÓйØÏµ£®
¹ÊÑ¡B£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑ飬½âÌâʱעÒâÀûÓñí¸ñÊý¾ÝÓë¹Û²âÖµ±È½Ï£¬ÕâÊÇÒ»¸ö»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýr£¨x£©=$\frac{1-x}{1+x}$£¬
£¨1£©Èôf£¨x£©=r£¨x£©lnx£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍ×î´óÖµ£»
£¨2£©Èôf£¨x£©=$\frac{lnx}{ar£¨x£©}$£¬ÇÒ¶ÔÈÎÒâx¡Ê£¨0£¬1£©£¬ºãÓÐf£¨x£©£¼-2£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬
£¨1£©Èôf£¨x£©¡Ý$\frac{t}{x}$-lnx £¨tΪʵÊý£©ºã³ÉÁ¢£¬ÇótµÄȡֵ·¶Î§£»
£¨2£©µ±m£¾0ʱ£¬ÌÖÂÛF£¨x£©=f£¨x£©+$\frac{{x}^{2}}{2}$-$\frac{{m}^{2}+1}{m}$xÔÚÇø¼ä£¨0£¬2£©Éϼ«ÖµµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈôÒ»¸öÔ²×¶µÄÖá½ØÃæ£¨¹ýÔ²×¶¶¥µãºÍµ×ÃæÖ±¾¶µÄ½ØÃ棩ÊÇÃæ»ýΪ$\sqrt{3}$µÄµÈ±ßÈý½ÇÐΣ¬Ôò¸ÃÔ²×¶µÄÌå»ýΪ$\frac{\sqrt{3}}{3}$¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÓÐÈË·¢ÏÖ£¬¶à¿´µçÊÓÈÝÒ×ʹÈ˱äÀäÄ®£¬Èç±íÊÇÒ»¸öµ÷²é»ú¹¹¶Ô´ËÏÖÏóµÄµ÷²é½á¹û£º
ÀäÄ®²»ÀäÄ®×ܼÆ
¶à¿´µçÊÓ6842110
ÉÙ¿´µçÊÓ203858
×ܼÆ8880168
P£¨K2¡Ýk£©0.0250.0100.0050.001
k5.0246.6357.87910.828
K2=$\frac{{168¡Á{{£¨{68¡Á38-20¡Á42}£©}^2}}}{110¡Á58¡Á88¡Á80}$¡Ö11.377£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®´óÔ¼ÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°¶à¿´µçÊÓÓëÈ˱äÀäÄ®¡±ÓйØÏµ
B£®´óÔ¼ÓÐ99.9%µÄ°ÑÎÕÈÏΪ¡°¶à¿´µçÊÓÓëÈ˱äÀäÄ®¡±Ã»ÓйØÏµ
C£®Ä³È˰®¿´µçÊÓ£¬ÔòËû±äÀäÄ®µÄ¿ÉÄÜÐÔΪ99.9%
D£®°®¿´µçÊÓµÄÈËÖдóÔ¼ÓÐ99.9%»á±äÀäÄ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=log2$\frac{{\sqrt{2}x}}{a-x}$£¬¹ý¶¨µãA£¨$\frac{1}{2}£¬\frac{1}{2}$£©µÄÖ±ÏßÓ뺯Êýf£¨x£©µÄͼÏó½»ÓÚÁ½µãB¡¢C£¬ÇÒ$\overrightarrow{AB}+\overrightarrow{AC}$=$\overrightarrow 0$
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÈôSn=f£¨$\frac{1}{n}$£©+f£¨$\frac{2}{n}$£©+¡­+f£¨$\frac{n-1}{n}$£©£¬n¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£®
£¨3£©ÒÑÖªÊýÁÐ{an}Âú×㣺a1=$\frac{2}{3}$£¬$\frac{1}{a_n}$=£¨Sn+1£©£¨Sn+1+1£©£¬ÆäÖÐn¡ÊN*£®TnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÈôTn£¼¦Ë£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®?x¡ÊZ£¬x4¡Ý1B£®?x¡ÊQ£¬x2=3C£®?x¡ÊR£¬x2-$\sqrt{2}$x-1£¾0D£®?x¡ÊN£¬|x|¡Ü0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁе㲻ÔÚÇúÏߦÑ=cos¦ÈÉϵÄÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{1}{2}$£¬$\frac{¦Ð}{3}$£©B£®£¨-$\frac{1}{2}$£¬$\frac{2¦Ð}{3}$£©C£®£¨$\frac{1}{2}$£¬-$\frac{¦Ð}{3}$£©D£®£¨$\frac{1}{2}$£¬-$\frac{2¦Ð}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ex£®
£¨¢ñ£©µ±x£¾-1ʱ£¬Ö¤Ã÷£ºf£¨x£©£¾$\frac{£¨x+1£©^{2}}{2}$£»
£¨¢ò£©µ±x£¾0ʱ£¬f£¨1-x£©+2lnx¡Üa£¨x-1£©+1ºã³ÉÁ¢£¬ÇóÕýʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸