精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,满足Sn=2an-n
(1)求数列{an}的通项公式;
(2)设bn=(2n+1)(an+1),求数列{bn}的前n项和Tn
(1)∵Sn=2an-n
当n=1时,a1=S1=2a1-1,∴a1=1
当n≥2时,Sn=2an-n   ①
Sn-1=2an-1-n+1        ②
①-②得an=2an-1+1即an+1=2(an-1+1)
∵a1+1=2≠0∴an-1+1≠0
an+1
an-1+1
=2

∴{an+1}是以首项为2,公比为2的等比数列
an+1=2•2n-1=2n
∴an=2n-1
(2)bn=(2n+1)•2n
Tn=3•2+5•22+7•23+…+(2n-1)•2n-1+(2n+1)•2n
2Tn=3•22+5•23+7•24+…+(2n-1)•2n+(2n+1)•2n+1
∴-Tn=6+2(22+23+24+…+2n)-(2n+1)•2n+1
∴Tn=2+(2n-1)•2n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案