精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为(
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]

【答案】D
【解析】解:∵函数f(x)的定义域为[1,5], ∴1≤2x﹣3≤5,解得2≤x≤4,
∴所求函数f(2x﹣3)的定义域是[2,4].
故选D.
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中,且为常数).

(1)当时,求函数的单调区间;

(2)若对于任意的,都有成立,求的取值范围;

(3)若方程上有且只有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f( x﹣1)=2x+3,且f(m﹣1)=6,则实数m等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有 两种“共享单车”(以下简称型车, 型车).某学习小组7名同学调查了该地区共享单车的使用情况.

(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到型车,3人租到型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到型车的概率;

(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租型车的用户中,在第4个月有的用户仍租型车.

第3个月

第4个月

租用型车

租用型车

租用型车

租用型车

若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:在等式 中,把 ,…, 叫做三项式的次系数列(如三项式的1次系数列是1,1,1).

(1)填空:三项式的2次系数列是_______________

三项式的3次系数列是_______________

(2)由杨辉三角数阵表可以得到二项式系数的性质,类似的请用三项式次系数列中的系数表示 (无须证明);

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列几种说法: ①若logablog3a=1,则b=3;
②若a+a1=3,则a﹣a1=
③f(x)=log(x+ 为奇函数;
④f(x)= 为定义域内的减函数;
⑤若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且f(2)=1,则f(x)=log x,其中说法正确的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线l与椭圆交于MN两点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

(1) 求函数的解析式;

(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;

(3) 若,求的值.

查看答案和解析>>

同步练习册答案