精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+x-6,g(x)=2x+1,α、β是方程f(x)=0的两个根(α>β).
(1)求α、β的值;
(2)数列{an}满足:a1=1,an+1=g(an),求an
(3)数列{an}满足:a1=3,an+1=an-
f(an)
g(an)
,(n=1,2,3,…)
bn=ln
an
an
,(n=1,2,…),求证数列{bn}为等比数列,并求{bn}的前n项和Sn
分析:(1)先求出方程的根,再利用α、β是方程f(x)=0的两个根(α>β),即可得到结论;
(2)证明{an+1}是以2为首项,2为公比的等比数列,即可求得an
(3)确定数列相邻项的关系,可得等比数列,再利用等比数列的求和公式,即可得到结论.
解答:(1)解:由x2+x-6=0,可得x=2或-3,
∵α、β是方程f(x)=0的两个根(α>β),∴α=2,β=-3;
(2)解:∵g(x)=2x+1,∴an+1=g(an)=2an+1
∴an+1+1=2(an+1)
∵a1=1,
∴{an+1}是以2为首项,2为公比的等比数列
∴an+1=2n,即an=2n-1;
(3)证明:an+1=an-
f(an)
g(an)
=
an2+6
2an+1

∴an+1+3=
an2+6
2an+1
+3=
(an+3)2
2an+1
,an+1-2=
(an-2)2
2an+1

bn=ln
an
an
=ln
an+3
an-2
=2ln
an-1+3
an-1-2
=2bn-1
∴{bn)是首项为ln
a1+3
a1-2
=ln6,公比为2的等比数列
∴{bn}的前n项和Sn=
(1-2n)ln6
1-2
=(2n-1)ln6.
点评:本题考查数列与函数的关系,考查等比数列的判定,考查等比数列的通项与求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案