精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(1)若对一切恒成立,求的取值范围;
(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.

(1)
(2)由题意可得

解析试题分析:(1),令
单调递减;当时,单调递增
∴当时, 有最小值
于是对于一切,恒成立,当且仅当    ①
,则
时,取最大值1,当且仅当时,①式成立
综上所述的取值的集合为
(2)由题意可得




单调递减;当时,单调递增。故当时,
,又
所以
所以存在,使
考点:利用导数研究函数的极值,不等式恒成立问题。
点评:典型题,在给定区间,导数非负,函数为增函数,导数非正,函数为减函数。求函数的极值问题,基本步骤是“求导数、求驻点、研究单调性、求极值”。“恒成立问题”往往通过构造函数,研究函数的最值,使问题得到解答。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)若函数上无零点,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数和“伪二次函数” .
(Ⅰ)证明:只要,无论取何值,函数在定义域内不可能总为增函数;
(Ⅱ)在同一函数图像上任意取不同两点A(),B(),线段AB中点为C(),记直线AB的斜率为k.
(1)对于二次函数,求证
(2)对于“伪二次函数” ,是否有(1)同样的性质?证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)当时,求证:上单调递增;
(2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数,函数
(Ⅰ)若函数有极大值32,求实数的值;
(Ⅱ)若对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案