精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=$2sin(wx+\frac{π}{6})(w>0,x∈R)$,最小正周期T=π,则实数ω=2,函数f(x)的图象的对称中心为($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z,单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

分析 根据函数的解析式利用正弦函数的周期性和单调性,以及图象的对称性,得出结论.

解答 解:对于函数f(x)=$2sin(wx+\frac{π}{6})(w>0,x∈R)$,它的最小正周期T=$\frac{2π}{ω}$=π,∴ω=2.
故f(x)=2sin(2x+$\frac{π}{6}$),令2x+$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,可得函数的对称中心为($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z,
故答案为:2;($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z;[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

点评 本题主要考查正弦函数的周期性和单调性,以及图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.记z=x+ky+1,(k∈R),其中x,y满足$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,若z的最大值为3,则实数k的值为0,z的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,Sn为其前n项和,S7=35,a2+a3+a10=12,则Sn的最大值为(  )
A.28B.36C.45D.55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,如果定义函数f(x)=x-[x],那么下列命题中正确的序号有(  )
①f(x)的定义域为R,值域为[0,1]②f(x)在区间[0,1)上单调递增
③f(x)既不是奇函数也不是偶函数       ④函数f(x)与g(x)=log5(-x)图象有5个交点.
A.①②③B.②③C.①②③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r>0)的一个公共点P,过P作与x轴平行的直线分别交两圆于A,B两点(不同于P点),且OA⊥OB,则r=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i是虚数单位,若复数z满足(2-5i)z=29,则z=(  )
A.2-5iB.2+5iC.-2-5iD.-2+5i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C′-ABC.
(Ⅰ)当$C'D=\sqrt{2}$时,求证:平面C′AB⊥平面DAB;①②
(Ⅱ)当AC′⊥BD时,求三棱锥C′-ABD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知m∈R,向量$\overrightarrow a=(m,1)$,$\overrightarrow b=(2,-6)$,且$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow a-\overrightarrow b|$=$5\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.根据函数y=f(x)的图象,求:f(0),f(3),定义域D,值域M,最值,单调减区间.

查看答案和解析>>

同步练习册答案