精英家教网 > 高中数学 > 题目详情
8.记z=x+ky+1,(k∈R),其中x,y满足$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,若z的最大值为3,则实数k的值为0,z的最小值为1.

分析 作出可行域,根据z的最大值为3,判断目标函数的斜率得出k的值,根据可行域得出最优解的位置,计算z的最小值.

解答 解:作出约束条件的可行域,如图所示:

(1)若k=0,则z=x+1,显然当x=2时z取得最大值3,符合题意,此时,当x=0时,z取得最小值1.
(2)若k≠0,由z=x+ky+1得y=-$\frac{1}{k}x+\frac{z-1}{k}$.
①若k>0,则当直线y=-$\frac{1}{k}x+\frac{z-1}{k}$经过点B(2,2)时,直线截距最大,即z最大.
∴3=2+2k+1,解得k=0(舍),
②若k<0,则当-$\frac{1}{k}$≤2即k≤-$\frac{1}{2}$时,直线y=-$\frac{1}{k}x+\frac{z-1}{k}$经过点C(1,0)时,直线截距最小,即z最大.
∴3=1+0×k+1,无解.
当-$\frac{1}{k}$≥2即-$\frac{1}{2}≤$k<0时,直线y=-$\frac{1}{k}x+\frac{z-1}{k}$经过点B(2,2)时,直线截距最小,即z最大
∴3=2+2k+1,解得k=0(舍).
综上,k=0,z的最小值为1.
故答案为0,1.

点评 本题考查了简单的线性规划,根据可行域判断最优解的位置是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知命题¬p:存在x∈(1,2)使得ex-a>0,若p是真命题,则实数a的取值范围为(  )
A.(-∞,e)B.(-∞,e]C.(e2,+∞)D.[e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.有下列命题:
(1)函数y=4cosx,x∈[-10π,10π]不是周期函数;
(2)函数y=lg(sinx+1)在区间[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z)上是单调递增函数;
(3)在△ABC中,∠A=60°,AB+AC=2,则BC边长的最小值为1;
(4)函数y=$\frac{6+si{n}^{2}x}{2-sinx}$的最小值为2$\sqrt{10}$-4.
其中正确命题的序号是(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从A点斜向上抛出一个小球,曲线ABCD是小球运动的一段轨迹,建立如图所示的正交坐标系xOy,x轴沿水平方向,轨迹上三个点的坐标分别为A(-L,0),C(L,0),D(2L,3L),小球受到的空气阻力忽略不计,轨迹与y轴的交点B的坐标为(  )
A.(0,-$\frac{L}{2}$)B.(0,-L)C.(0,-$\frac{3L}{2}$)D.(0,-2L)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.使(x2+$\frac{1}{2{x}^{3}}$)n(n∈N)展开式中含有常数项的n的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{i}$、$\overrightarrow{j}$均为单位向量,且互相垂直,且$\overrightarrow{a}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{b}$=-6$\overrightarrow{i}$+$\overrightarrow{j}$,而($λ\overrightarrow{a}+\overrightarrow{b}$)⊥($\overrightarrow{a}-λ\overrightarrow{b}$),求λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y≤0}\\{x+y-3≥0}\\{x+2y≤m}\end{array}\right.$,且z=x-y的最小值为-3,则x2+y2的最小值是5,实数m的值为6.•

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${27^{-\frac{1}{3}}}-{log_8}2$的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$2sin(wx+\frac{π}{6})(w>0,x∈R)$,最小正周期T=π,则实数ω=2,函数f(x)的图象的对称中心为($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z,单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

同步练习册答案